All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.SpecializedOps_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row;

import org.ejml.data.FMatrix1Row;
import org.ejml.data.FMatrixD1;
import org.ejml.data.FMatrixRMaj;
import org.ejml.dense.row.mult.VectorVectorMult_FDRM;
import org.ejml.interfaces.linsol.LinearSolverDense;


/**
 * This contains less common or more specialized matrix operations.
 *
 * @author Peter Abeles
 */
public class SpecializedOps_FDRM {

    /**
     * 

* Creates a reflector from the provided vector.
*
* Q = I - γ u uT
* γ = 2/||u||2 *

* *

* In practice {@link VectorVectorMult_FDRM#householder(float, FMatrixD1, FMatrixD1, FMatrixD1)} multHouseholder} * should be used for performance reasons since there is no need to calculate Q explicitly. *

* * @param u A vector. Not modified. * @return An orthogonal reflector. */ public static FMatrixRMaj createReflector(FMatrix1Row u ) { if( !MatrixFeatures_FDRM.isVector(u)) throw new IllegalArgumentException("u must be a vector"); float norm = NormOps_FDRM.fastNormF(u); float gamma = -2.0f/(norm*norm); FMatrixRMaj Q = CommonOps_FDRM.identity(u.getNumElements()); CommonOps_FDRM.multAddTransB(gamma,u,u,Q); return Q; } /** *

* Creates a reflector from the provided vector and gamma.
*
* Q = I - γ u uT
*

* *

* In practice {@link VectorVectorMult_FDRM#householder(float, FMatrixD1, FMatrixD1, FMatrixD1)} multHouseholder} * should be used for performance reasons since there is no need to calculate Q explicitly. *

* * @param u A vector. Not modified. * @param gamma To produce a reflector gamma needs to be equal to 2/||u||. * @return An orthogonal reflector. */ public static FMatrixRMaj createReflector(FMatrixRMaj u , float gamma) { if( !MatrixFeatures_FDRM.isVector(u)) throw new IllegalArgumentException("u must be a vector"); FMatrixRMaj Q = CommonOps_FDRM.identity(u.getNumElements()); CommonOps_FDRM.multAddTransB(-gamma,u,u,Q); return Q; } /** * Creates a copy of a matrix but swaps the rows as specified by the order array. * * @param order Specifies which row in the dest corresponds to a row in the src. Not modified. * @param src The original matrix. Not modified. * @param dst A Matrix that is a row swapped copy of src. Modified. */ public static FMatrixRMaj copyChangeRow(int order[] , FMatrixRMaj src , FMatrixRMaj dst ) { if( dst == null ) { dst = new FMatrixRMaj(src.numRows,src.numCols); } else if( src.numRows != dst.numRows || src.numCols != dst.numCols ) { throw new IllegalArgumentException("src and dst must have the same dimensions."); } for( int i = 0; i < src.numRows; i++ ) { int indexDst = i*src.numCols; int indexSrc = order[i]*src.numCols; System.arraycopy(src.data,indexSrc,dst.data,indexDst,src.numCols); } return dst; } /** * Copies just the upper or lower triangular portion of a matrix. * * @param src Matrix being copied. Not modified. * @param dst Where just a triangle from src is copied. If null a new one will be created. Modified. * @param upper If the upper or lower triangle should be copied. * @return The copied matrix. */ public static FMatrixRMaj copyTriangle(FMatrixRMaj src , FMatrixRMaj dst , boolean upper ) { if( dst == null ) { dst = new FMatrixRMaj(src.numRows,src.numCols); } else if( src.numRows != dst.numRows || src.numCols != dst.numCols ) { throw new IllegalArgumentException("src and dst must have the same dimensions."); } if( upper ) { int N = Math.min(src.numRows,src.numCols); for( int i = 0; i < N; i++ ) { int index = i*src.numCols+i; System.arraycopy(src.data,index,dst.data,index,src.numCols-i); } } else { for( int i = 0; i < src.numRows; i++ ) { int length = Math.min(i+1,src.numCols); int index = i*src.numCols; System.arraycopy(src.data,index,dst.data,index,length); } } return dst; } /** * Performs L = L*LT */ public static void multLowerTranB( FMatrixRMaj mat ) { int m = mat.numCols; float[] L = mat.data; for( int i = 0; i < m; i++ ) { for( int j = m-1; j >= i; j-- ) { float val = 0; for( int k = 0; k <= i; k++ ) { val += L[ i*m + k] * L[ j*m + k ]; } L[ i*m + j ] = val; } } // copy the results into the lower portion for( int i = 0; i < m; i++ ) { for (int j = 0; j < i; j++) { L[i*m+j] = L[j*m+i]; } } } /** * Performs L = LT*L */ public static void multLowerTranA( FMatrixRMaj mat ) { int m = mat.numCols; float[] L = mat.data; for( int i = 0; i < m; i++ ) { for( int j = m-1; j >= i; j-- ) { float val = 0; for (int k = j; k < m; k++) { val += L[ k*m + i] * L[ k*m + j ]; } L[ i*m + j ] = val; } } // copy the results into the lower portion for( int i = 0; i < m; i++ ) { for (int j = 0; j < i; j++) { L[i*m+j] = L[j*m+i]; } } } /** *

* Computes the F norm of the difference between the two Matrices:
*
* Sqrt{∑i=1:mj=1:n ( aij - bij)2} *

*

* This is often used as a cost function. *

* * @see NormOps_FDRM#fastNormF * * @param a m by n matrix. Not modified. * @param b m by n matrix. Not modified. * * @return The F normal of the difference matrix. */ public static float diffNormF(FMatrixD1 a , FMatrixD1 b ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { throw new IllegalArgumentException("Both matrices must have the same shape."); } final int size = a.getNumElements(); FMatrixRMaj diff = new FMatrixRMaj(size,1); for( int i = 0; i < size; i++ ) { diff.set(i , b.get(i) - a.get(i)); } return NormOps_FDRM.normF(diff); } public static float diffNormF_fast(FMatrixD1 a , FMatrixD1 b ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { throw new IllegalArgumentException("Both matrices must have the same shape."); } final int size = a.getNumElements(); float total=0; for( int i = 0; i < size; i++ ) { float diff = b.get(i) - a.get(i); total += diff*diff; } return (float)Math.sqrt(total); } /** *

* Computes the p=1 p-norm of the difference between the two Matrices:
*
* ∑i=1:mj=1:n | aij - bij|
*
* where |x| is the absolute value of x. *

*

* This is often used as a cost function. *

* * @param a m by n matrix. Not modified. * @param b m by n matrix. Not modified. * * @return The p=1 p-norm of the difference matrix. */ public static float diffNormP1(FMatrixD1 a , FMatrixD1 b ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { throw new IllegalArgumentException("Both matrices must have the same shape."); } final int size = a.getNumElements(); float total=0; for( int i = 0; i < size; i++ ) { total += Math.abs(b.get(i) - a.get(i)); } return total; } /** *

* Performs the following operation:
*
* B = A + αI *

* * @param A A square matrix. Not modified. * @param B A square matrix that the results are saved to. Modified. * @param alpha Scaling factor for the identity matrix. */ public static void addIdentity(FMatrix1Row A , FMatrix1Row B , float alpha ) { if( A.numCols != A.numRows ) throw new IllegalArgumentException("A must be square"); if( B.numCols != A.numCols || B.numRows != A.numRows ) throw new IllegalArgumentException("B must be the same shape as A"); int n = A.numCols; int index = 0; for( int i = 0; i < n; i++ ) { for( int j = 0; j < n; j++ , index++) { if( i == j ) { B.set( index , A.get(index) + alpha); } else { B.set( index , A.get(index) ); } } } } /** *

* Extracts a row or column vector from matrix A. The first element in the matrix is at element (rowA,colA). * The next 'length' elements are extracted along a row or column. The results are put into vector 'v' * start at its element v0. *

* * @param A Matrix that the vector is being extracted from. Not modified. * @param rowA Row of the first element that is extracted. * @param colA Column of the first element that is extracted. * @param length Length of the extracted vector. * @param row If true a row vector is extracted, otherwise a column vector is extracted. * @param offsetV First element in 'v' where the results are extracted to. * @param v Vector where the results are written to. Modified. */ public static void subvector(FMatrix1Row A, int rowA, int colA, int length , boolean row, int offsetV, FMatrix1Row v) { if( row ) { for( int i = 0; i < length; i++ ) { v.set( offsetV +i , A.get(rowA,colA+i) ); } } else { for( int i = 0; i < length; i++ ) { v.set( offsetV +i , A.get(rowA+i,colA)); } } } /** * Takes a matrix and splits it into a set of row or column vectors. * * @param A original matrix. * @param column If true then column vectors will be created. * @return Set of vectors. */ public static FMatrixRMaj[] splitIntoVectors(FMatrix1Row A , boolean column ) { int w = column ? A.numCols : A.numRows; int M = column ? A.numRows : 1; int N = column ? 1 : A.numCols; int o = Math.max(M,N); FMatrixRMaj[] ret = new FMatrixRMaj[w]; for( int i = 0; i < w; i++ ) { FMatrixRMaj a = new FMatrixRMaj(M,N); if( column ) subvector(A,0,i,o,false,0,a); else subvector(A,i,0,o,true,0,a); ret[i] = a; } return ret; } /** *

* Creates a pivot matrix that exchanges the rows in a matrix: *
* A' = P*A
*

*

* For example, if element 0 in 'pivots' is 2 then the first row in A' will be the 3rd row in A. *

* * @param ret If null then a new matrix is declared otherwise the results are written to it. Is modified. * @param pivots Specifies the new order of rows in a matrix. * @param numPivots How many elements in pivots are being used. * @param transposed If the transpose of the matrix is returned. * @return A pivot matrix. */ public static FMatrixRMaj pivotMatrix(FMatrixRMaj ret, int pivots[], int numPivots, boolean transposed ) { if( ret == null ) { ret = new FMatrixRMaj(numPivots, numPivots); } else { if( ret.numCols != numPivots || ret.numRows != numPivots ) throw new IllegalArgumentException("Unexpected matrix dimension"); CommonOps_FDRM.fill(ret, 0); } if( transposed ) { for( int i = 0; i < numPivots; i++ ) { ret.set(pivots[i],i,1); } } else { for( int i = 0; i < numPivots; i++ ) { ret.set(i,pivots[i],1); } } return ret; } /** * Computes the product of the diagonal elements. For a diagonal or triangular * matrix this is the determinant. * * @param T A matrix. * @return product of the diagonal elements. */ public static float diagProd( FMatrix1Row T ) { float prod = 1.0f; int N = Math.min(T.numRows,T.numCols); for( int i = 0; i < N; i++ ) { prod *= T.unsafe_get(i,i); } return prod; } /** *

* Returns the absolute value of the digonal element in the matrix that has the largest absolute value.
*
* Max{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max abs element value of the matrix. */ public static float elementDiagonalMaxAbs( FMatrixD1 a ) { final int size = Math.min(a.numRows,a.numCols); float max = 0; for( int i = 0; i < size; i++ ) { float val = Math.abs(a.get( i,i )); if( val > max ) { max = val; } } return max; } /** * Computes the quality of a triangular matrix, where the quality of a matrix * is defined in {@link LinearSolverDense#quality()}. In * this situation the quality os the absolute value of the product of * each diagonal element divided by the magnitude of the largest diagonal element. * If all diagonal elements are zero then zero is returned. * * @param T A matrix. * @return the quality of the system. */ public static float qualityTriangular(FMatrixD1 T) { int N = Math.min(T.numRows,T.numCols); // TODO make faster by just checking the upper triangular portion float max = elementDiagonalMaxAbs(T); if( max == 0.0f ) return 0.0f; float quality = 1.0f; for( int i = 0; i < N; i++ ) { quality *= T.unsafe_get(i,i)/max; } return Math.abs(quality); } /** * Sums up the square of each element in the matrix. This is equivalent to the * Frobenius norm squared. * * @param m Matrix. * @return Sum of elements squared. */ public static float elementSumSq( FMatrixD1 m ) { // minimize round off error float maxAbs = CommonOps_FDRM.elementMaxAbs(m); if( maxAbs == 0) return 0; float total = 0; int N = m.getNumElements(); for( int i = 0; i < N; i++ ) { float d = m.data[i]/maxAbs; total += d*d; } return maxAbs*total*maxAbs; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy