All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.block.InnerTriangularSolver_FDRB Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.block;

import javax.annotation.Generated;
import org.ejml.data.FMatrixRBlock;

/**
 * 

* Contains triangular solvers for inner blocks of a {@link FMatrixRBlock}. *

* * Algorithm for lower triangular inverse:
* *
 * for i=1:m
 *     for j=1:i-1
 *         val = 0
 *         for k=j:i-1
 *             val = val - L(i,k) * X(k,j)
 *         end
 *         x(i,j) = val / L(i,i)
 *     end
 *     x(i,i) = 1 / L(i,i)
 * end
 * 
* * @author Peter Abeles */ @Generated("org.ejml.dense.block.InnerTriangularSolver_DDRB") public class InnerTriangularSolver_FDRB { /** *

* Inverts a square lower triangular matrix: L = L-1 *

* * @param L Lower triangular matrix being inverted. Not modified. * @param L_inv Where the inverse is stored. Can be the same as L. Modified. * @param m The number of rows and columns. * @param offsetL which index does the L matrix start at. * @param offsetL_inv which index does the L_inv matrix start at. */ public static void invertLower( float[] L, float[] L_inv, int m, int offsetL, int offsetL_inv ) { for (int i = 0; i < m; i++) { float L_ii = L[offsetL + i*m + i]; for (int j = 0; j < i; j++) { float val = 0; for (int k = j; k < i; k++) { val += L[offsetL + i*m + k]*L_inv[offsetL_inv + k*m + j]; } L_inv[offsetL_inv + i*m + j] = -val/L_ii; } L_inv[offsetL_inv + i*m + i] = 1.0f/L_ii; } } /** *

* Inverts a square lower triangular matrix: L = L-1 *

* * @param L Lower triangular matrix being inverted. Over written with inverted matrix. Modified. * @param m The number of rows and columns. * @param offsetL which index does the L matrix start at. */ public static void invertLower( float[] L, int m, int offsetL ) { for (int i = 0; i < m; i++) { float L_ii = L[offsetL + i*m + i]; for (int j = 0; j < i; j++) { float val = 0; for (int k = j; k < i; k++) { val += L[offsetL + i*m + k]*L[offsetL + k*m + j]; } L[offsetL + i*m + j] = -val/L_ii; } L[offsetL + i*m + i] = 1.0f/L_ii; } } /** *

* Solves for non-singular lower triangular matrices using forward substitution. *
* B = L-1B
*
* where B is a (m by n) matrix, L is a lower triangular (m by m) matrix. *

* * @param L An m by m non-singular lower triangular matrix. Not modified. * @param b An m by n matrix. Modified. * @param m size of the L matrix * @param n number of columns in the B matrix. * @param strideL number of elements that need to be added to go to the next row in L * @param offsetL initial index in L where the matrix starts * @param offsetB initial index in B where the matrix starts */ public static void solveL( float[] L, float[] b, int m, int n, int strideL, int offsetL, int offsetB ) { for (int j = 0; j < n; j++) { for (int i = 0; i < m; i++) { float sum = b[offsetB + i*n + j]; for (int k = 0; k < i; k++) { sum -= L[offsetL + i*strideL + k]*b[offsetB + k*n + j]; } b[offsetB + i*n + j] = sum/L[offsetL + i*strideL + i]; } } } /** *

* Solves for non-singular transposed lower triangular matrices using backwards substitution: *
* B = L-TB
*
* where B is a (m by n) matrix, L is a lower triangular (m by m) matrix. *

* * @param L An m by m non-singular lower triangular matrix. Not modified. * @param b An m by n matrix. Modified. * @param m size of the L matrix * @param n number of columns in the B matrix. * @param strideL number of elements that need to be added to go to the next row in L * @param offsetL initial index in L where the matrix starts * @param offsetB initial index in B where the matrix starts */ public static void solveTransL( float[] L, float[] b, int m, int n, int strideL, int offsetL, int offsetB ) { for (int j = 0; j < n; j++) { for (int i = m - 1; i >= 0; i--) { float sum = b[offsetB + i*n + j]; for (int k = i + 1; k < m; k++) { sum -= L[offsetL + k*strideL + i]*b[offsetB + k*n + j]; } b[offsetB + i*n + j] = sum/L[offsetL + i*strideL + i]; } } } /** *

* Solves for non-singular lower triangular matrices using forward substitution. *
* BT = L-1BT
*
* where B is a (n by m) matrix, L is a lower triangular (m by m) matrix. *

* * @param L An m by m non-singular lower triangular matrix. Not modified. * @param b An n by m matrix. Modified. * @param m size of the L matrix * @param n number of columns in the B matrix. * @param offsetL initial index in L where the matrix starts * @param offsetB initial index in B where the matrix starts */ public static void solveLTransB( float[] L, float[] b, int m, int n, int strideL, int offsetL, int offsetB ) { // for( int j = 0; j < n; j++ ) { // for( int i = 0; i < m; i++ ) { // float sum = b[offsetB + j*m+i]; // for( int k=0; k * Solves for non-singular upper triangular matrices using backwards substitution. *
* B = U-1B
*
* where B (m by n) is a matrix, U is a (m by m ) upper triangular matrix.
*

* * @param U An m by m non-singular upper triangular matrix. Not modified. * @param b An m by n matrix. Modified. * @param m size of the L matrix * @param n number of columns in the B matrix. * @param offsetU initial index in L where the matrix starts * @param offsetB initial index in B where the matrix starts */ public static void solveU( float[] U, float[] b, int m, int n, int strideU, int offsetU, int offsetB ) { for (int j = 0; j < n; j++) { for (int i = m - 1; i >= 0; i--) { float sum = b[offsetB + i*n + j]; for (int k = i + 1; k < m; k++) { sum -= U[offsetU + i*strideU + k]*b[offsetB + k*n + j]; } b[offsetB + i*n + j] = sum/U[offsetU + i*strideU + i]; } } } /** *

* Solves for non-singular upper triangular matrices using forward substitution. *
* B = U-TB
*
* where B (m by n) is a matrix, U is a (m by m ) upper triangular matrix.
*

* * @param U An m by m non-singular upper triangular matrix. Not modified. * @param b An m by n matrix. Modified. * @param m size of the L matrix * @param n number of columns in the B matrix. * @param offsetU initial index in L where the matrix starts * @param offsetB initial index in B where the matrix starts */ public static void solveTransU( float[] U, float[] b, int m, int n, int strideU, int offsetU, int offsetB ) { for (int j = 0; j < n; j++) { for (int i = 0; i < m; i++) { float sum = b[offsetB + i*n + j]; for (int k = 0; k < i; k++) { sum -= U[offsetU + k*strideU + i]*b[offsetB + k*n + j]; } b[offsetB + i*n + j] = sum/U[offsetU + i*strideU + i]; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy