org.ejml.dense.block.InnerTriangularSolver_FDRB Maven / Gradle / Ivy
Show all versions of ejml-fdense Show documentation
/*
* Copyright (c) 2009-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml.dense.block;
import javax.annotation.Generated;
import org.ejml.data.FMatrixRBlock;
/**
*
* Contains triangular solvers for inner blocks of a {@link FMatrixRBlock}.
*
*
* Algorithm for lower triangular inverse:
*
*
* for i=1:m
* for j=1:i-1
* val = 0
* for k=j:i-1
* val = val - L(i,k) * X(k,j)
* end
* x(i,j) = val / L(i,i)
* end
* x(i,i) = 1 / L(i,i)
* end
*
*
* @author Peter Abeles
*/
@Generated("org.ejml.dense.block.InnerTriangularSolver_DDRB")
public class InnerTriangularSolver_FDRB {
/**
*
* Inverts a square lower triangular matrix: L = L-1
*
*
* @param L Lower triangular matrix being inverted. Not modified.
* @param L_inv Where the inverse is stored. Can be the same as L. Modified.
* @param m The number of rows and columns.
* @param offsetL which index does the L matrix start at.
* @param offsetL_inv which index does the L_inv matrix start at.
*/
public static void invertLower( float[] L,
float[] L_inv,
int m,
int offsetL,
int offsetL_inv ) {
for (int i = 0; i < m; i++) {
float L_ii = L[offsetL + i*m + i];
for (int j = 0; j < i; j++) {
float val = 0;
for (int k = j; k < i; k++) {
val += L[offsetL + i*m + k]*L_inv[offsetL_inv + k*m + j];
}
L_inv[offsetL_inv + i*m + j] = -val/L_ii;
}
L_inv[offsetL_inv + i*m + i] = 1.0f/L_ii;
}
}
/**
*
* Inverts a square lower triangular matrix: L = L-1
*
*
* @param L Lower triangular matrix being inverted. Over written with inverted matrix. Modified.
* @param m The number of rows and columns.
* @param offsetL which index does the L matrix start at.
*/
public static void invertLower( float[] L,
int m,
int offsetL ) {
for (int i = 0; i < m; i++) {
float L_ii = L[offsetL + i*m + i];
for (int j = 0; j < i; j++) {
float val = 0;
for (int k = j; k < i; k++) {
val += L[offsetL + i*m + k]*L[offsetL + k*m + j];
}
L[offsetL + i*m + j] = -val/L_ii;
}
L[offsetL + i*m + i] = 1.0f/L_ii;
}
}
/**
*
* Solves for non-singular lower triangular matrices using forward substitution.
*
* B = L-1B
*
* where B is a (m by n) matrix, L is a lower triangular (m by m) matrix.
*
*
* @param L An m by m non-singular lower triangular matrix. Not modified.
* @param b An m by n matrix. Modified.
* @param m size of the L matrix
* @param n number of columns in the B matrix.
* @param strideL number of elements that need to be added to go to the next row in L
* @param offsetL initial index in L where the matrix starts
* @param offsetB initial index in B where the matrix starts
*/
public static void solveL( float[] L, float[] b,
int m, int n,
int strideL, int offsetL, int offsetB ) {
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
float sum = b[offsetB + i*n + j];
for (int k = 0; k < i; k++) {
sum -= L[offsetL + i*strideL + k]*b[offsetB + k*n + j];
}
b[offsetB + i*n + j] = sum/L[offsetL + i*strideL + i];
}
}
}
/**
*
* Solves for non-singular transposed lower triangular matrices using backwards substitution:
*
* B = L-TB
*
* where B is a (m by n) matrix, L is a lower triangular (m by m) matrix.
*
*
* @param L An m by m non-singular lower triangular matrix. Not modified.
* @param b An m by n matrix. Modified.
* @param m size of the L matrix
* @param n number of columns in the B matrix.
* @param strideL number of elements that need to be added to go to the next row in L
* @param offsetL initial index in L where the matrix starts
* @param offsetB initial index in B where the matrix starts
*/
public static void solveTransL( float[] L, float[] b,
int m, int n,
int strideL, int offsetL, int offsetB ) {
for (int j = 0; j < n; j++) {
for (int i = m - 1; i >= 0; i--) {
float sum = b[offsetB + i*n + j];
for (int k = i + 1; k < m; k++) {
sum -= L[offsetL + k*strideL + i]*b[offsetB + k*n + j];
}
b[offsetB + i*n + j] = sum/L[offsetL + i*strideL + i];
}
}
}
/**
*
* Solves for non-singular lower triangular matrices using forward substitution.
*
* BT = L-1BT
*
* where B is a (n by m) matrix, L is a lower triangular (m by m) matrix.
*
*
* @param L An m by m non-singular lower triangular matrix. Not modified.
* @param b An n by m matrix. Modified.
* @param m size of the L matrix
* @param n number of columns in the B matrix.
* @param offsetL initial index in L where the matrix starts
* @param offsetB initial index in B where the matrix starts
*/
public static void solveLTransB( float[] L, float[] b,
int m, int n,
int strideL, int offsetL, int offsetB ) {
// for( int j = 0; j < n; j++ ) {
// for( int i = 0; i < m; i++ ) {
// float sum = b[offsetB + j*m+i];
// for( int k=0; k
* Solves for non-singular upper triangular matrices using backwards substitution.
*
* B = U-1B
*
* where B (m by n) is a matrix, U is a (m by m ) upper triangular matrix.
*
*
* @param U An m by m non-singular upper triangular matrix. Not modified.
* @param b An m by n matrix. Modified.
* @param m size of the L matrix
* @param n number of columns in the B matrix.
* @param offsetU initial index in L where the matrix starts
* @param offsetB initial index in B where the matrix starts
*/
public static void solveU( float[] U, float[] b,
int m, int n,
int strideU, int offsetU, int offsetB ) {
for (int j = 0; j < n; j++) {
for (int i = m - 1; i >= 0; i--) {
float sum = b[offsetB + i*n + j];
for (int k = i + 1; k < m; k++) {
sum -= U[offsetU + i*strideU + k]*b[offsetB + k*n + j];
}
b[offsetB + i*n + j] = sum/U[offsetU + i*strideU + i];
}
}
}
/**
*
* Solves for non-singular upper triangular matrices using forward substitution.
*
* B = U-TB
*
* where B (m by n) is a matrix, U is a (m by m ) upper triangular matrix.
*
*
* @param U An m by m non-singular upper triangular matrix. Not modified.
* @param b An m by n matrix. Modified.
* @param m size of the L matrix
* @param n number of columns in the B matrix.
* @param offsetU initial index in L where the matrix starts
* @param offsetB initial index in B where the matrix starts
*/
public static void solveTransU( float[] U, float[] b,
int m, int n,
int strideU, int offsetU, int offsetB ) {
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
float sum = b[offsetB + i*n + j];
for (int k = 0; k < i; k++) {
sum -= U[offsetU + k*strideU + i]*b[offsetB + k*n + j];
}
b[offsetB + i*n + j] = sum/U[offsetU + i*strideU + i];
}
}
}
}