All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.block.MatrixMult_FDRB Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.block;

import javax.annotation.Generated;
import org.ejml.data.FMatrixRBlock;
import org.ejml.data.FSubmatrixD1;

import static org.ejml.dense.block.InnerMultiplication_FDRB.*;
import static org.ejml.dense.block.MatrixOps_FDRB.checkShapeMult;

//CONCURRENT_INLINE import org.ejml.concurrency.EjmlConcurrency;

/**
 * 

* Matrix multiplication for {@link FMatrixRBlock}. All sub-matrices must be block aligned. *

* * @author Peter Abeles */ @Generated("org.ejml.dense.block.MatrixMult_DDRB") public class MatrixMult_FDRB { /** *

* Performs a matrix multiplication on {@link FMatrixRBlock} submatrices.
*
* c = a * b
*
*

* *

* It is assumed that all submatrices start at the beginning of a block and end at the end of a block. *

* * @param blockLength Size of the blocks in the submatrix. * @param A A submatrix. Not modified. * @param B A submatrix. Not modified. * @param C Result of the operation. Modified, */ public static void mult( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { checkShapeMult(blockLength, A, B, C); //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.row0,A.row1,blockLength,i->{ for (int i = A.row0; i < A.row1; i += blockLength) { int heightA = Math.min(blockLength, A.row1 - i); for (int j = B.col0; j < B.col1; j += blockLength) { int widthB = Math.min(blockLength, B.col1 - j); int indexC = (i - A.row0 + C.row0)*C.original.numCols + (j - B.col0 + C.col0)*heightA; for (int k = A.col0; k < A.col1; k += blockLength) { int widthA = Math.min(blockLength, A.col1 - k); int indexA = i*A.original.numCols + k*heightA; int indexB = (k - A.col0 + B.row0)*B.original.numCols + j*widthA; if (k == A.col0) blockMultSet(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); else blockMultPlus(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); } } } //CONCURRENT_ABOVE }); } /** *

* Performs a matrix multiplication on {@link FMatrixRBlock} submatrices.
*
* c = c + a * b
*
*

* *

* It is assumed that all submatrices start at the beginning of a block and end at the end of a block. *

* * @param blockLength Size of the blocks in the submatrix. * @param A A submatrix. Not modified. * @param B A submatrix. Not modified. * @param C Result of the operation. Modified, */ public static void multPlus( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { // checkShapeMult( blockLength,A,B,C); //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.row0,A.row1,blockLength,i->{ for (int i = A.row0; i < A.row1; i += blockLength) { int heightA = Math.min(blockLength, A.row1 - i); for (int j = B.col0; j < B.col1; j += blockLength) { int widthB = Math.min(blockLength, B.col1 - j); int indexC = (i - A.row0 + C.row0)*C.original.numCols + (j - B.col0 + C.col0)*heightA; for (int k = A.col0; k < A.col1; k += blockLength) { int widthA = Math.min(blockLength, A.col1 - k); int indexA = i*A.original.numCols + k*heightA; int indexB = (k - A.col0 + B.row0)*B.original.numCols + j*widthA; blockMultPlus(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); } } } //CONCURRENT_ABOVE }); } /** *

* Performs a matrix multiplication on {@link FMatrixRBlock} submatrices.
*
* c = c - a * b
*
*

* *

* It is assumed that all submatrices start at the beginning of a block and end at the end of a block. *

* * @param blockLength Size of the blocks in the submatrix. * @param A A submatrix. Not modified. * @param B A submatrix. Not modified. * @param C Result of the operation. Modified, */ public static void multMinus( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { // checkShapeMult( blockLength,A,B,C); //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.row0,A.row1,blockLength,i->{ for (int i = A.row0; i < A.row1; i += blockLength) { int heightA = Math.min(blockLength, A.row1 - i); for (int j = B.col0; j < B.col1; j += blockLength) { int widthB = Math.min(blockLength, B.col1 - j); int indexC = (i - A.row0 + C.row0)*C.original.numCols + (j - B.col0 + C.col0)*heightA; for (int k = A.col0; k < A.col1; k += blockLength) { int widthA = Math.min(blockLength, A.col1 - k); int indexA = i*A.original.numCols + k*heightA; int indexB = (k - A.col0 + B.row0)*B.original.numCols + j*widthA; blockMultMinus(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); } } } //CONCURRENT_ABOVE }); } /** *

* Performs a matrix multiplication with a transpose on {@link FMatrixRBlock} submatrices.
*
* c = aT * b
*
*

* *

* It is assumed that all submatrices start at the beginning of a block and end at the end of a block. *

* * @param blockLength Size of the blocks in the submatrix. * @param A A submatrix. Not modified. * @param B A submatrix. Not modified. * @param C Result of the operation. Modified, */ public static void multTransA( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.col0,A.col1,blockLength,i->{ for (int i = A.col0; i < A.col1; i += blockLength) { int widthA = Math.min(blockLength, A.col1 - i); for (int j = B.col0; j < B.col1; j += blockLength) { int widthB = Math.min(blockLength, B.col1 - j); int indexC = (i - A.col0 + C.row0)*C.original.numCols + (j - B.col0 + C.col0)*widthA; for (int k = A.row0; k < A.row1; k += blockLength) { int heightA = Math.min(blockLength, A.row1 - k); int indexA = k*A.original.numCols + i*heightA; int indexB = (k - A.row0 + B.row0)*B.original.numCols + j*heightA; if (k == A.row0) blockMultSetTransA(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); else blockMultPlusTransA(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); } } } //CONCURRENT_ABOVE }); } public static void multPlusTransA( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.col0,A.col1,blockLength,i->{ for (int i = A.col0; i < A.col1; i += blockLength) { int widthA = Math.min(blockLength, A.col1 - i); for (int j = B.col0; j < B.col1; j += blockLength) { int widthB = Math.min(blockLength, B.col1 - j); int indexC = (i - A.col0 + C.row0)*C.original.numCols + (j - B.col0 + C.col0)*widthA; for (int k = A.row0; k < A.row1; k += blockLength) { int heightA = Math.min(blockLength, A.row1 - k); int indexA = k*A.original.numCols + i*heightA; int indexB = (k - A.row0 + B.row0)*B.original.numCols + j*heightA; blockMultPlusTransA(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); } } } //CONCURRENT_ABOVE }); } public static void multMinusTransA( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.col0,A.col1,blockLength,i->{ for (int i = A.col0; i < A.col1; i += blockLength) { int widthA = Math.min(blockLength, A.col1 - i); for (int j = B.col0; j < B.col1; j += blockLength) { int widthB = Math.min(blockLength, B.col1 - j); int indexC = (i - A.col0 + C.row0)*C.original.numCols + (j - B.col0 + C.col0)*widthA; for (int k = A.row0; k < A.row1; k += blockLength) { int heightA = Math.min(blockLength, A.row1 - k); int indexA = k*A.original.numCols + i*heightA; int indexB = (k - A.row0 + B.row0)*B.original.numCols + j*heightA; blockMultMinusTransA(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthB); } } } //CONCURRENT_ABOVE }); } /** *

* Performs a matrix multiplication with a transpose on {@link FMatrixRBlock} submatrices.
*
* c = a * b T
*
*

* *

* It is assumed that all submatrices start at the beginning of a block and end at the end of a block. *

* * @param blockLength Length of the blocks in the submatrix. * @param A A submatrix. Not modified. * @param B A submatrix. Not modified. * @param C Result of the operation. Modified, */ public static void multTransB( int blockLength, FSubmatrixD1 A, FSubmatrixD1 B, FSubmatrixD1 C ) { //CONCURRENT_BELOW EjmlConcurrency.loopFor(A.row0,A.row1,blockLength,i->{ for (int i = A.row0; i < A.row1; i += blockLength) { int heightA = Math.min(blockLength, A.row1 - i); for (int j = B.row0; j < B.row1; j += blockLength) { int widthC = Math.min(blockLength, B.row1 - j); int indexC = (i - A.row0 + C.row0)*C.original.numCols + (j - B.row0 + C.col0)*heightA; for (int k = A.col0; k < A.col1; k += blockLength) { int widthA = Math.min(blockLength, A.col1 - k); int indexA = i*A.original.numCols + k*heightA; int indexB = j*B.original.numCols + (k - A.col0 + B.col0)*widthC; if (k == A.col0) blockMultSetTransB(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthC); else blockMultPlusTransB(A.original.data, B.original.data, C.original.data, indexA, indexB, indexC, heightA, widthA, widthC); } } } //CONCURRENT_ABOVE }); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy