All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.CommonOps_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.ejml.dense.row;

import javax.annotation.Generated;
import org.ejml.EjmlParameters;
import org.ejml.LinearSolverSafe;
import org.ejml.MatrixDimensionException;
import org.ejml.UtilEjml;
import org.ejml.data.*;
import org.ejml.dense.row.decomposition.TriangularSolver_FDRM;
import org.ejml.dense.row.decomposition.lu.LUDecompositionAlt_FDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_FDRM;
import org.ejml.dense.row.linsol.chol.LinearSolverChol_FDRM;
import org.ejml.dense.row.linsol.lu.LinearSolverLu_FDRM;
import org.ejml.dense.row.linsol.svd.SolvePseudoInverseSvd_FDRM;
import org.ejml.dense.row.misc.*;
import org.ejml.dense.row.mult.MatrixMatrixMult_FDRM;
import org.ejml.dense.row.mult.MatrixMultProduct_FDRM;
import org.ejml.dense.row.mult.MatrixVectorMult_FDRM;
import org.ejml.dense.row.mult.VectorVectorMult_FDRM;
import org.ejml.interfaces.linsol.LinearSolverDense;
import org.ejml.interfaces.linsol.ReducedRowEchelonForm_F32;
import org.ejml.ops.FOperatorUnary;
import org.jetbrains.annotations.Nullable;

import java.util.Arrays;

import static org.ejml.UtilEjml.*;

/**
 * 

* Common matrix operations are contained here. Which specific underlying algorithm is used * is not specified just the out come of the operation. Nor should calls to these functions * reply on the underlying implementation. Which algorithm is used can depend on the matrix * being passed in. *

*

* For more exotic and specialized generic operations see {@link SpecializedOps_FDRM}. *

* * @author Peter Abeles * @see MatrixMatrixMult_FDRM * @see MatrixVectorMult_FDRM * @see SpecializedOps_FDRM * @see MatrixFeatures_FDRM */ @SuppressWarnings({"ForLoopReplaceableByForEach"}) @Generated("org.ejml.dense.row.CommonOps_DDRM") public class CommonOps_FDRM { /** *

Performs the following operation:
*
* c = a * b
*
* cij = ∑k=1:n { aik * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T mult( T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numRows, b.numCols); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); if (b.numCols == 1) { MatrixVectorMult_FDRM.mult(a, b, output); } else if (b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.mult_reorder(a, b, output); } else { MatrixMatrixMult_FDRM.mult_small(a, b, output); } return output; } /** *

Performs the following operation:
*
* c = α * a * b
*
* cij = α ∑k=1:n { * aik * bkj} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T mult( float alpha, T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numRows, b.numCols); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); // TODO add a matrix vectory multiply here if (b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.mult_reorder(alpha, a, b, output); } else { MatrixMatrixMult_FDRM.mult_small(alpha, a, b, output); } return output; } /** *

Performs the following operation:
*
* c = aT * b
*
* cij = ∑k=1:n { aki * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multTransA( T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numCols, b.numCols); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); if (b.numCols == 1) { // todo check a.numCols == 1 and do inner product? // there are significantly faster algorithms when dealing with vectors if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixVectorMult_FDRM.multTransA_reorder(a, b, output); } else { MatrixVectorMult_FDRM.multTransA_small(a, b, output); } } else if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multTransA_reorder(a, b, output); } else { MatrixMatrixMult_FDRM.multTransA_small(a, b, output); } return output; } /** *

Performs the following operation:
*
* c = α * aT * b
*
* cij = α ∑k=1:n { aki * bkj} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multTransA( float alpha, T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numCols, b.numCols); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); // TODO add a matrix vectory multiply here if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multTransA_reorder(alpha, a, b, output); } else { MatrixMatrixMult_FDRM.multTransA_small(alpha, a, b, output); } return output; } /** *

* Performs the following operation:
*
* c = a * bT
* cij = ∑k=1:n { aik * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multTransB( T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numRows, b.numRows); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); if (b.numRows == 1) { MatrixVectorMult_FDRM.mult(a, b, output); } else { MatrixMatrixMult_FDRM.multTransB(a, b, output); } return output; } /** *

* Performs the following operation:
*
* c = α * a * bT
* cij = α ∑k=1:n { aik * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multTransB( float alpha, T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numRows, b.numRows); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); // TODO add a matrix vectory multiply here MatrixMatrixMult_FDRM.multTransB(alpha, a, b, output); return output; } /** *

* Performs the following operation:
*
* c = aT * bT
* cij = ∑k=1:n { aki * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multTransAB( T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numCols, b.numRows); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); if (b.numRows == 1) { // there are significantly faster algorithms when dealing with vectors if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixVectorMult_FDRM.multTransA_reorder(a, b, output); } else { MatrixVectorMult_FDRM.multTransA_small(a, b, output); } } else if (a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multTransAB_aux(a, b, output, null); } else { MatrixMatrixMult_FDRM.multTransAB(a, b, output); } return output; } /** *

* Performs the following operation:
*
* c = α * aT * bT
* cij = α ∑k=1:n { aki * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multTransAB( float alpha, T a, T b, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numCols, b.numRows); UtilEjml.checkSameInstance(a, output); UtilEjml.checkSameInstance(b, output); // TODO add a matrix vectory multiply here if (a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multTransAB_aux(alpha, a, b, output, null); } else { MatrixMatrixMult_FDRM.multTransAB(alpha, a, b, output); } return output; } /** *

* Computes the dot product or inner product between two vectors. If the two vectors are columns vectors * then it is defined as:
* {@code dot(a,b) = aT * b}
* If the vectors are column or row or both is ignored by this function. *

* * @param a Vector * @param b Vector * @return Dot product of the two vectors */ public static float dot( FMatrixD1 a, FMatrixD1 b ) { if (!MatrixFeatures_FDRM.isVector(a) || !MatrixFeatures_FDRM.isVector(b)) throw new RuntimeException("Both inputs must be vectors"); return VectorVectorMult_FDRM.innerProd(a, b); } /** *

Computes the matrix multiplication inner product:
*
* c = aT * a
*
* cij = ∑k=1:n { aki * akj} *

* *

* Is faster than using a generic matrix multiplication by taking advantage of symmetry. For * vectors there is an even faster option, see {@link VectorVectorMult_FDRM#innerProd(FMatrixD1, FMatrixD1)} *

* * @param a The matrix being multiplied. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multInner( T a, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numCols, a.numCols); if (a.numCols >= EjmlParameters.MULT_INNER_SWITCH) { MatrixMultProduct_FDRM.inner_small(a, output); } else { MatrixMultProduct_FDRM.inner_reorder(a, output); } return output; } /** *

Computes the matrix multiplication outer product:
*
* c = a * aT
*
* cij = ∑k=1:m { aik * ajk} *

* *

* Is faster than using a generic matrix multiplication by taking advantage of symmetry. *

* * @param a The matrix being multiplied. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T multOuter( T a, @Nullable T output ) { output = reshapeOrDeclare(output, a, a.numRows, a.numRows); MatrixMultProduct_FDRM.outer(a, output); return output; } /** *

* Performs the following operation:
*
* c = c + a * b
* cij = cij + ∑k=1:n { aik * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAdd( FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { if (b.numCols == 1) { MatrixVectorMult_FDRM.multAdd(a, b, c); } else { if (b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multAdd_reorder(a, b, c); } else { MatrixMatrixMult_FDRM.multAdd_small(a, b, c); } } } /** *

* Performs the following operation:
*
* c = c + α * a * b
* cij = cij + α * ∑k=1:n { aik * bkj} *

* * @param alpha scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAdd( float alpha, FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { // TODO add a matrix vectory multiply here if (b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multAdd_reorder(alpha, a, b, c); } else { MatrixMatrixMult_FDRM.multAdd_small(alpha, a, b, c); } } /** *

* Performs the following operation:
*
* c = c + aT * b
* cij = cij + ∑k=1:n { aki * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransA( FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { if (b.numCols == 1) { if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixVectorMult_FDRM.multAddTransA_reorder(a, b, c); } else { MatrixVectorMult_FDRM.multAddTransA_small(a, b, c); } } else { if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multAddTransA_reorder(a, b, c); } else { MatrixMatrixMult_FDRM.multAddTransA_small(a, b, c); } } } /** *

* Performs the following operation:
*
* c = c + α * aT * b
* cij =cij + α * ∑k=1:n { aki * bkj} *

* * @param alpha scaling factor * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransA( float alpha, FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { // TODO add a matrix vectory multiply here if (a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multAddTransA_reorder(alpha, a, b, c); } else { MatrixMatrixMult_FDRM.multAddTransA_small(alpha, a, b, c); } } /** *

* Performs the following operation:
*
* c = c + a * bT
* cij = cij + ∑k=1:n { aik * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransB( FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { MatrixMatrixMult_FDRM.multAddTransB(a, b, c); } /** *

* Performs the following operation:
*
* c = c + α * a * bT
* cij = cij + α * ∑k=1:n { aik * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransB( float alpha, FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { // TODO add a matrix vectory multiply here MatrixMatrixMult_FDRM.multAddTransB(alpha, a, b, c); } /** *

* Performs the following operation:
*
* c = c + aT * bT
* cij = cij + ∑k=1:n { aki * bjk} *

* * @param a The left matrix in the multiplication operation. Not Modified. * @param b The right matrix in the multiplication operation. Not Modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransAB( FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { if (a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multAddTransAB_aux(a, b, c, null); } else { MatrixMatrixMult_FDRM.multAddTransAB(a, b, c); } } /** *

* Performs the following operation:
*
* c = c + α * aT * bT
* cij = cij + α * ∑k=1:n { aki * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not Modified. * @param b The right matrix in the multiplication operation. Not Modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransAB( float alpha, FMatrix1Row a, FMatrix1Row b, FMatrix1Row c ) { // TODO add a matrix vectory multiply here if (a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH) { MatrixMatrixMult_FDRM.multAddTransAB_aux(alpha, a, b, c, null); } else { MatrixMatrixMult_FDRM.multAddTransAB(alpha, a, b, c); } } /** *

* Solves for x in the following equation:
*
* A*x = b *

* *

* If the system could not be solved then false is returned. If it returns true * that just means the algorithm finished operating, but the results could still be bad * because 'A' is singular or nearly singular. *

* *

* If repeat calls to solve are being made then one should consider using {@link LinearSolverFactory_FDRM} * instead. *

* *

* It is ok for 'b' and 'x' to be the same matrix. *

* * @param a A matrix that is m by n. Not modified. * @param b A matrix that is n by k. Not modified. * @param x A matrix that is m by k. Modified. * @return true if it could invert the matrix false if it could not. */ public static boolean solve( FMatrixRMaj a, FMatrixRMaj b, FMatrixRMaj x ) { x.reshape(a.numCols, b.numCols); LinearSolverDense solver = LinearSolverFactory_FDRM.general(a.numRows, a.numCols); // make sure the inputs 'a' and 'b' are not modified solver = new LinearSolverSafe<>(solver); if (!solver.setA(a)) return false; solver.solve(b, x); return true; } /** *

* Linear solver for systems which are symmetric positive definite.
* A*x = b *

* * @param A A matrix that is n by n and SPD. Not modified. * @param b A matrix that is n by k. Not modified. * @param x A matrix that is n by k. Modified. * @return true if it could invert the matrix false if it could not. * @see UnrolledCholesky_FDRM * @see LinearSolverFactory_FDRM */ public static boolean solveSPD( FMatrixRMaj A, FMatrixRMaj b, FMatrixRMaj x ) { if (A.numRows != A.numCols) throw new IllegalArgumentException("Must be a square matrix"); x.reshape(A.numCols, b.numCols); if (A.numRows <= UnrolledCholesky_FDRM.MAX) { FMatrixRMaj L = A.createLike(); // L*L' = A if (!UnrolledCholesky_FDRM.lower(A, L)) return false; // if only one column then a faster method can be used if (x.numCols == 1) { x.setTo(b); TriangularSolver_FDRM.solveL(L.data, x.data, L.numCols); TriangularSolver_FDRM.solveTranL(L.data, x.data, L.numCols); } else { float[] vv = new float[A.numCols]; LinearSolverChol_FDRM.solveLower(L, b, x, vv); } } else { LinearSolverDense solver = LinearSolverFactory_FDRM.chol(A.numCols); solver = new LinearSolverSafe<>(solver); if (!solver.setA(A)) return false; solver.solve(b, x); return true; } return true; } /** *

Performs an "in-place" transpose.

* *

* For square matrices the transpose is truly in-place and does not require * additional memory. For non-square matrices, internally a temporary matrix is declared and * {@link #transpose(FMatrixRMaj, FMatrixRMaj)} is invoked. *

* * @param mat The matrix that is to be transposed. Modified. */ public static void transpose( FMatrixRMaj mat ) { if (mat.numCols == mat.numRows) { TransposeAlgs_FDRM.square(mat); } else { FMatrixRMaj b = new FMatrixRMaj(mat.numCols, mat.numRows); transpose(mat, b); mat.setTo(b); } } /** *

* Transposes matrix 'a' and stores the results in 'b':
*
* bij = aji
* where 'b' is the transpose of 'a'. *

* * @param A The original matrix. Not modified. * @param A_tran Where the transpose is stored. If null a new matrix is created. Modified. * @return The transposed matrix. */ public static FMatrixRMaj transpose( FMatrixRMaj A, @Nullable FMatrixRMaj A_tran ) { A_tran = reshapeOrDeclare(A_tran, A.numCols, A.numRows); if (A.numRows > EjmlParameters.TRANSPOSE_SWITCH && A.numCols > EjmlParameters.TRANSPOSE_SWITCH) TransposeAlgs_FDRM.block(A, A_tran, EjmlParameters.BLOCK_WIDTH); else TransposeAlgs_FDRM.standard(A, A_tran); return A_tran; } /** *

* This computes the trace of the matrix:
*
* trace = ∑i=1:n { aii }
* where n = min(numRows,numCols) *

* * @param a A square matrix. Not modified. */ public static float trace( FMatrix1Row a ) { int N = Math.min(a.numRows, a.numCols); float sum = 0; int index = 0; for (int i = 0; i < N; i++) { sum += a.get(index); index += 1 + a.numCols; } return sum; } /** * Returns the determinant of the matrix. If the inverse of the matrix is also * needed, then using {@link org.ejml.interfaces.decomposition.LUDecomposition_F32} directly (or any * similar algorithm) can be more efficient. * * @param mat The matrix whose determinant is to be computed. Not modified. * @return The determinant. */ public static float det( FMatrixRMaj mat ) { int numCol = mat.getNumCols(); int numRow = mat.getNumRows(); if (numCol != numRow) { throw new MatrixDimensionException("Must be a square matrix."); } else if (numCol <= UnrolledDeterminantFromMinor_FDRM.MAX) { // slight performance boost overall by doing it this way // when it was the case statement the VM did some strange optimization // and made case 2 about 1/2 the speed if (numCol >= 2) { return UnrolledDeterminantFromMinor_FDRM.det(mat); } else { return mat.get(0); } } else { LUDecompositionAlt_FDRM alg = new LUDecompositionAlt_FDRM(); if (alg.inputModified()) { mat = mat.copy(); } if (!alg.decompose(mat)) return 0.0f; return alg.computeDeterminant().real; } } /** *

* Performs a matrix inversion operation on the specified matrix and stores the results * in the same matrix.
*
* a = a-1 *

* *

* If the algorithm could not invert the matrix then false is returned. If it returns true * that just means the algorithm finished. The results could still be bad * because the matrix is singular or nearly singular. *

* * @param mat The matrix that is to be inverted. Results are stored here. Modified. * @return true if it could invert the matrix false if it could not. */ public static boolean invert( FMatrixRMaj mat ) { if (mat.numCols <= UnrolledInverseFromMinor_FDRM.MAX) { if (mat.numCols != mat.numRows) { throw new MatrixDimensionException("Must be a square matrix."); } if (mat.numCols >= 2) { UnrolledInverseFromMinor_FDRM.inv(mat, mat); } else { mat.set(0, 1.0f/mat.get(0)); } } else { LUDecompositionAlt_FDRM alg = new LUDecompositionAlt_FDRM(); LinearSolverLu_FDRM solver = new LinearSolverLu_FDRM(alg); if (solver.setA(mat)) { solver.invert(mat); } else { return false; } } return true; } /** *

* Performs a matrix inversion operation that does not modify the original * and stores the results in another matrix. The two matrices must have the * same dimension.
*
* b = a-1 *

* *

* If the algorithm could not invert the matrix then false is returned. If it returns true * that just means the algorithm finished. The results could still be bad * because the matrix is singular or nearly singular. *

* *

* For medium to large matrices there might be a slight performance boost to using * {@link LinearSolverFactory_FDRM} instead. *

* * @param mat The matrix that is to be inverted. Not modified. * @param result Where the inverse matrix is stored. Modified. * @return true if it could invert the matrix false if it could not. */ public static boolean invert( FMatrixRMaj mat, FMatrixRMaj result ) { result.reshape(mat.numRows, mat.numCols); if (mat.numCols <= UnrolledInverseFromMinor_FDRM.MAX) { if (mat.numCols != mat.numRows) { throw new MatrixDimensionException("Must be a square matrix."); } if (result.numCols >= 2) { UnrolledInverseFromMinor_FDRM.inv(mat, result); } else { result.set(0, 1.0f/mat.get(0)); } } else { LUDecompositionAlt_FDRM alg = new LUDecompositionAlt_FDRM(); LinearSolverLu_FDRM solver = new LinearSolverLu_FDRM(alg); if (solver.modifiesA()) mat = mat.copy(); if (!solver.setA(mat)) return false; solver.invert(result); } return true; } /** * Matrix inverse for symmetric positive definite matrices. For small matrices an unrolled * cholesky is used. Otherwise a standard decomposition. * * @param mat (Input) SPD matrix * @param result (Output) Inverted matrix. * @return true if it could invert the matrix false if it could not. * @see UnrolledCholesky_FDRM * @see LinearSolverFactory_FDRM#chol(int) */ public static boolean invertSPD( FMatrixRMaj mat, FMatrixRMaj result ) { if (mat.numRows != mat.numCols) throw new IllegalArgumentException("Must be a square matrix"); result.reshape(mat.numRows, mat.numRows); if (mat.numRows <= UnrolledCholesky_FDRM.MAX) { // L*L' = A if (!UnrolledCholesky_FDRM.lower(mat, result)) return false; // L = inv(L) TriangularSolver_FDRM.invertLower(result.data, result.numCols); // inv(A) = inv(L')*inv(L) SpecializedOps_FDRM.multLowerTranA(result); } else { LinearSolverDense solver = LinearSolverFactory_FDRM.chol(mat.numCols); if (solver.modifiesA()) mat = mat.copy(); if (!solver.setA(mat)) return false; solver.invert(result); } return true; } /** *

* Computes the Moore-Penrose pseudo-inverse:
*
* pinv(A) = (ATA)-1 AT
* or
* pinv(A) = AT(AAT)-1
*

*

* Internally it uses {@link SolvePseudoInverseSvd_FDRM} to compute the inverse. For performance reasons, this should only * be used when a matrix is singular or nearly singular. *

* * @param A A m by n Matrix. Not modified. * @param invA Where the computed pseudo inverse is stored. n by m. Modified. */ public static void pinv( FMatrixRMaj A, FMatrixRMaj invA ) { LinearSolverDense solver = LinearSolverFactory_FDRM.pseudoInverse(true); if (solver.modifiesA()) A = A.copy(); if (!solver.setA(A)) throw new IllegalArgumentException("Invert failed, maybe a bug?"); solver.invert(invA); } /** * Converts the columns in a matrix into a set of vectors. * * @param A Matrix. Not modified. * @return An array of vectors. */ public static FMatrixRMaj[] columnsToVector( FMatrixRMaj A, @Nullable FMatrixRMaj[] v ) { FMatrixRMaj[] ret; if (v == null || v.length < A.numCols) { ret = new FMatrixRMaj[A.numCols]; } else { ret = v; } for (int i = 0; i < ret.length; i++) { if (ret[i] == null) { ret[i] = new FMatrixRMaj(A.numRows, 1); } else { ret[i].reshape(A.numRows, 1, false); } FMatrixRMaj u = ret[i]; for (int j = 0; j < A.numRows; j++) { u.set(j, 0, A.get(j, i)); } } return ret; } /** * Converts the rows in a matrix into a set of vectors. * * @param A Matrix. Not modified. * @return An array of vectors. */ public static FMatrixRMaj[] rowsToVector( FMatrixRMaj A, @Nullable FMatrixRMaj[] v ) { FMatrixRMaj[] ret; if (v == null || v.length < A.numRows) { ret = new FMatrixRMaj[A.numRows]; } else { ret = v; } for (int i = 0; i < ret.length; i++) { if (ret[i] == null) { ret[i] = new FMatrixRMaj(A.numCols, 1); } else { ret[i].reshape(A.numCols, 1, false); } FMatrixRMaj u = ret[i]; for (int j = 0; j < A.numCols; j++) { u.set(j, 0, A.get(i, j)); } } return ret; } /** * Sets all the diagonal elements equal to one and everything else equal to zero. * If this is a square matrix then it will be an identity matrix. * * @param mat A square matrix. * @see #identity(int) */ public static void setIdentity( FMatrix1Row mat ) { int width = mat.numRows < mat.numCols ? mat.numRows : mat.numCols; Arrays.fill(mat.data, 0, mat.getNumElements(), 0); int index = 0; for (int i = 0; i < width; i++, index += mat.numCols + 1) { mat.data[index] = 1; } } /** *

* Creates an identity matrix of the specified size.
*
* aij = 0 if i ≠ j
* aij = 1 if i = j
*

* * @param width The width and height of the identity matrix. * @return A new instance of an identity matrix. */ public static FMatrixRMaj identity( int width ) { FMatrixRMaj ret = new FMatrixRMaj(width, width); for (int i = 0; i < width; i++) { ret.set(i, i, 1.0f); } return ret; } /** * Creates a rectangular matrix which is zero except along the diagonals. * * @param numRows Number of rows in the matrix. * @param numCols NUmber of columns in the matrix. * @return A matrix with diagonal elements equal to one. */ public static FMatrixRMaj identity( int numRows, int numCols ) { FMatrixRMaj ret = new FMatrixRMaj(numRows, numCols); int small = numRows < numCols ? numRows : numCols; for (int i = 0; i < small; i++) { ret.set(i, i, 1.0f); } return ret; } /** *

* Creates a new square matrix whose diagonal elements are specified by diagEl and all * the other elements are zero.
*
* aij = 0 if i ≤ j
* aij = diag[i] if i = j
*

* * @param diagEl Contains the values of the diagonal elements of the resulting matrix. * @return A new matrix. * @see #diagR */ public static FMatrixRMaj diag( float... diagEl ) { return diag(null, diagEl.length, diagEl); } /** * @see #diag(float...) */ public static FMatrixRMaj diag( @Nullable FMatrixRMaj ret, int width, float... diagEl ) { if (ret == null) { ret = new FMatrixRMaj(width, width); } else { if (ret.numRows != width || ret.numCols != width) throw new IllegalArgumentException("Unexpected matrix size"); CommonOps_FDRM.fill(ret, 0); } for (int i = 0; i < width; i++) { ret.unsafe_set(i, i, diagEl[i]); } return ret; } /** *

* Creates a new rectangular matrix whose diagonal elements are specified by diagEl and all * the other elements are zero.
*
* aij = 0 if i ≤ j
* aij = diag[i] if i = j
*

* * @param numRows Number of rows in the matrix. * @param numCols Number of columns in the matrix. * @param diagEl Contains the values of the diagonal elements of the resulting matrix. * @return A new matrix. * @see #diag */ public static FMatrixRMaj diagR( int numRows, int numCols, float... diagEl ) { FMatrixRMaj ret = new FMatrixRMaj(numRows, numCols); int o = Math.min(numRows, numCols); for (int i = 0; i < o; i++) { ret.set(i, i, diagEl[i]); } return ret; } /** *

* The Kronecker product of two matrices is defined as:
* Cij = aijB
* where Cij is a sub matrix inside of C ∈ ℜ m*k × n*l, * A ∈ ℜ m × n, and B ∈ ℜ k × l. *

* * @param A The left matrix in the operation. Not modified. * @param B The right matrix in the operation. Not modified. * @param C Where the results of the operation are stored. Nullable. Modified. */ public static FMatrixRMaj kron( FMatrixRMaj A, FMatrixRMaj B, @Nullable FMatrixRMaj C ) { int numColsC = A.numCols*B.numCols; int numRowsC = A.numRows*B.numRows; C = reshapeOrDeclare(C,numRowsC, numColsC); // TODO see comment below // this will work well for small matrices // but an alternative version should be made for large matrices for (int i = 0; i < A.numRows; i++) { for (int j = 0; j < A.numCols; j++) { float a = A.get(i, j); for (int rowB = 0; rowB < B.numRows; rowB++) { for (int colB = 0; colB < B.numCols; colB++) { float val = a*B.get(rowB, colB); C.unsafe_set(i*B.numRows + rowB, j*B.numCols + colB, val); } } } } return C; } /** *

* Extracts a submatrix from 'src' and inserts it in a submatrix in 'dst'. *

*

* si-y0 , j-x0 = oij for all y0 ≤ i < y1 and x0 ≤ j < x1
*
* where 'sij' is an element in the submatrix and 'oij' is an element in the * original matrix. *

* * @param src The original matrix which is to be copied. Not modified. * @param srcX0 Start column. * @param srcX1 Stop column+1. * @param srcY0 Start row. * @param srcY1 Stop row+1. * @param dst Where the submatrix are stored. Modified. * @param dstY0 Start row in dst. * @param dstX0 start column in dst. */ public static void extract( FMatrix src, int srcY0, int srcY1, int srcX0, int srcX1, FMatrix dst, int dstY0, int dstX0 ) { if (srcY1 < srcY0 || srcY0 < 0 || srcY1 > src.getNumRows()) throw new MatrixDimensionException("srcY1 < srcY0 || srcY0 < 0 || srcY1 > src.numRows. " + stringShapes(src, dst)); if (srcX1 < srcX0 || srcX0 < 0 || srcX1 > src.getNumCols()) throw new MatrixDimensionException("srcX1 < srcX0 || srcX0 < 0 || srcX1 > src.numCols. " + stringShapes(src, dst)); int w = srcX1 - srcX0; int h = srcY1 - srcY0; if (dstY0 + h > dst.getNumRows()) throw new MatrixDimensionException("dst is too small in rows. " + dst.getNumRows() + " < " + (dstY0 + h)); if (dstX0 + w > dst.getNumCols()) throw new MatrixDimensionException("dst is too small in columns. " + dst.getNumCols() + " < " + (dstX0 + w)); // interestingly, the performance is only different for small matrices but identical for larger ones if (src instanceof FMatrixRMaj && dst instanceof FMatrixRMaj) { ImplCommonOps_FDRM.extract((FMatrixRMaj)src, srcY0, srcX0, (FMatrixRMaj)dst, dstY0, dstX0, h, w); } else { ImplCommonOps_FDMA.extract(src, srcY0, srcX0, dst, dstY0, dstX0, h, w); } } /** * Extract where the destination is reshaped to match the extracted region * * @param src The original matrix which is to be copied. Not modified. * @param srcX0 Start column. * @param srcX1 Stop column+1. * @param srcY0 Start row. * @param srcY1 Stop row+1. * @param dst Where the submatrix are stored. Modified. */ public static void extract( FMatrix src, int srcY0, int srcY1, int srcX0, int srcX1, FMatrix dst ) { ((ReshapeMatrix)dst).reshape(srcY1 - srcY0, srcX1 - srcX0); extract(src, srcY0, srcY1, srcX0, srcX1, dst, 0, 0); } /** *

* Extracts a submatrix from 'src' and inserts it in a submatrix in 'dst'. Uses the shape of dst * to determine the size of the matrix extracted. *

* * @param src The original matrix which is to be copied. Not modified. * @param srcY0 Start row in src. * @param srcX0 Start column in src. * @param dst Where the matrix is extracted into. */ public static void extract( FMatrix src, int srcY0, int srcX0, FMatrix dst ) { extract(src, srcY0, srcY0 + dst.getNumRows(), srcX0, srcX0 + dst.getNumCols(), dst, 0, 0); } /** *

* Creates a new matrix which is the specified submatrix of 'src' *

*

* si-y0 , j-x0 = oij for all y0 ≤ i < y1 and x0 ≤ j < x1
*
* where 'sij' is an element in the submatrix and 'oij' is an element in the * original matrix. *

* * @param src The original matrix which is to be copied. Not modified. * @param srcX0 Start column. * @param srcX1 Stop column+1. * @param srcY0 Start row. * @param srcY1 Stop row+1. * @return Extracted submatrix. */ public static FMatrixRMaj extract( FMatrixRMaj src, int srcY0, int srcY1, int srcX0, int srcX1 ) { if (srcY1 <= srcY0 || srcY0 < 0 || srcY1 > src.numRows) throw new MatrixDimensionException("srcY1 <= srcY0 || srcY0 < 0 || srcY1 > src.numRows"); if (srcX1 <= srcX0 || srcX0 < 0 || srcX1 > src.numCols) throw new MatrixDimensionException("srcX1 <= srcX0 || srcX0 < 0 || srcX1 > src.numCols"); int w = srcX1 - srcX0; int h = srcY1 - srcY0; FMatrixRMaj dst = new FMatrixRMaj(h, w); ImplCommonOps_FDRM.extract(src, srcY0, srcX0, dst, 0, 0, h, w); return dst; } /** * Extracts out a matrix from source given a sub matrix with arbitrary rows and columns specified in * two array lists * * @param src Source matrix. Not modified. * @param rows array of row indexes * @param rowsSize maximum element in row array * @param cols array of column indexes * @param colsSize maximum element in column array * @param dst output matrix. Must be correct shape. */ public static FMatrixRMaj extract( FMatrixRMaj src, int[] rows, int rowsSize, int[] cols, int colsSize, @Nullable FMatrixRMaj dst ) { dst = reshapeOrDeclare(dst, rowsSize, colsSize); int indexDst = 0; for (int i = 0; i < rowsSize; i++) { int indexSrcRow = src.numCols*rows[i]; for (int j = 0; j < colsSize; j++) { dst.data[indexDst++] = src.data[indexSrcRow + cols[j]]; } } return dst; } /** * Extracts the elements from the source matrix by their 1D index. * * @param src Source matrix. Not modified. * @param indexes array of row indexes * @param length maximum element in row array * @param dst output matrix. Must be a vector of the correct length. */ public static FMatrixRMaj extract( FMatrixRMaj src, int[] indexes, int length, @Nullable FMatrixRMaj dst ) { if (dst==null) dst = new FMatrixRMaj(length,1); else if (!(MatrixFeatures_FDRM.isVector(dst) && dst.getNumElements()==length) ) dst.reshape(length,1); for (int i = 0; i < length; i++) { dst.data[i] = src.data[indexes[i]]; } return dst; } /** * Inserts into the specified elements of dst the source matrix. *
     * for i in len(rows):
     *   for j in len(cols):
     *      dst(rows[i],cols[j]) = src(i,j)
     * 
* * @param src Source matrix. Not modified. * @param dst output matrix. Must be correct shape. * @param rows array of row indexes. * @param rowsSize maximum element in row array * @param cols array of column indexes * @param colsSize maximum element in column array */ public static void insert( FMatrixRMaj src, FMatrixRMaj dst, int[] rows, int rowsSize, int[] cols, int colsSize ) { UtilEjml.assertEq(rowsSize, src.numRows, "src's rows don't match rowsSize"); UtilEjml.assertEq(colsSize, src.numCols, "src's columns don't match colsSize"); int indexSrc = 0; for (int i = 0; i < rowsSize; i++) { int indexDstRow = dst.numCols*rows[i]; for (int j = 0; j < colsSize; j++) { dst.data[indexDstRow + cols[j]] = src.data[indexSrc++]; } } } /** *

* Extracts the diagonal elements 'src' write it to the 'dst' vector. 'dst' * can either be a row or column vector. *

* * @param src Matrix whose diagonal elements are being extracted. Not modified. * @param dst A vector the results will be written into. Modified. */ public static FMatrixRMaj extractDiag( FMatrixRMaj src, @Nullable FMatrixRMaj dst ) { int N = Math.min(src.numRows, src.numCols); if( dst == null ) { dst = new FMatrixRMaj(N,1); } else { if (!MatrixFeatures_FDRM.isVector(dst) || dst.numCols*dst.numCols != N) { dst.reshape(N, 1); } } for (int i = 0; i < N; i++) { dst.set(i, src.unsafe_get(i, i)); } return dst; } /** * Extracts the row from a matrix. * * @param a Input matrix * @param row Which row is to be extracted * @param out output. Storage for the extracted row. If null then a new vector will be returned. * @return The extracted row. */ public static FMatrixRMaj extractRow( FMatrixRMaj a, int row, @Nullable FMatrixRMaj out ) { if (out == null) out = new FMatrixRMaj(1, a.numCols); else if (!MatrixFeatures_FDRM.isVector(out) || out.getNumElements() != a.numCols) out.reshape(1, a.numCols); System.arraycopy(a.data, a.getIndex(row, 0), out.data, 0, a.numCols); return out; } /** * Extracts the column from a matrix. * * @param a Input matrix * @param column Which column is to be extracted * @param out output. Storage for the extracted column. If null then a new vector will be returned. * @return The extracted column. */ public static FMatrixRMaj extractColumn( FMatrixRMaj a, int column, @Nullable FMatrixRMaj out ) { if (out == null) out = new FMatrixRMaj(a.numRows, 1); else if (!MatrixFeatures_FDRM.isVector(out) || out.getNumElements() != a.numRows) out.reshape(a.numRows, 1); int index = column; for (int i = 0; i < a.numRows; i++, index += a.numCols) { out.data[i] = a.data[index]; } return out; } /** * Removes columns from the matrix. * * @param A Matrix. Modified * @param col0 First column * @param col1 Last column, inclusive. */ public static void removeColumns( FMatrixRMaj A, int col0, int col1 ) { UtilEjml.assertTrue(col0 < col1, "col1 must be >= col0"); UtilEjml.assertTrue(col0 >= 0 && col1 <= A.numCols,"Columns which are to be removed must be in bounds"); int step = col1 - col0 + 1; int offset = 0; for (int row = 0, idx = 0; row < A.numRows; row++) { for (int i = 0; i < col0; i++, idx++) { A.data[idx] = A.data[idx + offset]; } offset += step; for (int i = col1 + 1; i < A.numCols; i++, idx++) { A.data[idx] = A.data[idx + offset]; } } A.numCols -= step; } /** * Inserts matrix 'src' into matrix 'dest' with the (0,0) of src at (row,col) in dest. * This is equivalent to calling extract(src,0,src.numRows,0,src.numCols,dest,destY0,destX0). * * @param src matrix that is being copied into dest. Not modified. * @param dest Where src is being copied into. Modified. * @param destY0 Start row for the copy into dest. * @param destX0 Start column for the copy into dest. */ public static void insert( FMatrix src, FMatrix dest, int destY0, int destX0 ) { extract(src, 0, src.getNumRows(), 0, src.getNumCols(), dest, destY0, destX0); } /** *

* Returns the value of the element in the matrix that has the largest value.
*
* Max{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @return The max element value of the matrix. */ public static float elementMax( FMatrixD1 a ) { return ImplCommonOps_FDRM.elementMax(a, null); } /** *

* Returns the value of the element in the matrix that has the largest value.
*
* Max{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @param loc (Output) Location of selected element. * @return The max element value of the matrix. */ public static float elementMax( FMatrixD1 a, ElementLocation loc ) { return ImplCommonOps_FDRM.elementMax(a, loc); } /** *

* Returns the absolute value of the element in the matrix that has the largest absolute value.
*
* Max{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max abs element value of the matrix. */ public static float elementMaxAbs( FMatrixD1 a ) { return ImplCommonOps_FDRM.elementMaxAbs(a, null); } /** *

* Returns the absolute value of the element in the matrix that has the largest absolute value.
*
* Max{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @param loc (Output) Location of element element. * @return The max abs element value of the matrix. */ public static float elementMaxAbs( FMatrixD1 a, ElementLocation loc ) { return ImplCommonOps_FDRM.elementMaxAbs(a, loc); } /** *

* Returns the value of the element in the matrix that has the minimum value.
*
* Min{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @return The value of element in the matrix with the minimum value. */ public static float elementMin( FMatrixD1 a ) { return ImplCommonOps_FDRM.elementMin(a, null); } /** *

* Returns the value of the element in the matrix that has the minimum value.
*
* Min{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @param loc (Output) Location of selected element. * @return The value of element in the matrix with the minimum value. */ public static float elementMin( FMatrixD1 a, ElementLocation loc ) { return ImplCommonOps_FDRM.elementMin(a, loc); } /** *

* Returns the absolute value of the element in the matrix that has the smallest absolute value.
*
* Min{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max element value of the matrix. */ public static float elementMinAbs( FMatrixD1 a ) { return ImplCommonOps_FDRM.elementMinAbs(a, null); } /** *

* Returns the absolute value of the element in the matrix that has the smallest absolute value.
*
* Min{ |aij| } for all i and j
*

* * @param a (Input) A matrix. Not modified. * @param loc (Output) Location of selected element. * @return The max element value of the matrix. */ public static float elementMinAbs( FMatrixD1 a, ElementLocation loc ) { return ImplCommonOps_FDRM.elementMinAbs(a, loc); } /** *

Performs the an element by element multiplication operation:
*
* aij = aij * bij
*

* * @param A The left matrix in the multiplication operation. Modified. * @param B The right matrix in the multiplication operation. Not modified. */ public static void elementMult( FMatrixD1 A, FMatrixD1 B ) { ImplCommonOps_FDRM.elementMult(A, B); } /** *

Performs the an element by element multiplication operation:
*
* cij = aij * bij
*

* * @param A The left matrix in the multiplication operation. Not modified. * @param B The right matrix in the multiplication operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T elementMult( T A, T B, @Nullable T output ) { return ImplCommonOps_FDRM.elementMult(A, B, output); } /** *

Performs the an element by element division operation:
*
* aij = aij / bij
*

* * @param A The left matrix in the division operation. Modified. * @param B The right matrix in the division operation. Not modified. */ public static void elementDiv( FMatrixD1 A, FMatrixD1 B ) { ImplCommonOps_FDRM.elementDiv(A, B); } /** *

Performs the an element by element division operation:
*
* cij = aij / bij
*

* * @param A The left matrix in the division operation. Not modified. * @param B The right matrix in the division operation. Not modified. * @param output Where the results of the operation are stored. Modified. */ public static T elementDiv( T A, T B, @Nullable T output ) { return ImplCommonOps_FDRM.elementDiv(A, B, output); } /** *

* Computes the sum of all the elements in the matrix:
*
* sum(i=1:m , j=1:n ; aij) *

* * @param mat An m by n matrix. Not modified. * @return The sum of the elements. */ public static float elementSum( FMatrixD1 mat ) { return ImplCommonOps_FDRM.elementSum(mat); } /** *

* Computes the sum of the absolute value all the elements in the matrix:
*
* sum(i=1:m , j=1:n ; |aij|) *

* * @param mat An m by n matrix. Not modified. * @return The sum of the absolute value of each element. */ public static float elementSumAbs( FMatrixD1 mat ) { return ImplCommonOps_FDRM.elementSumAbs(mat); } /** *

* Element-wise power operation
* cij = aij ^ bij *

* * @param A left side * @param B right side * @param output output (modified) */ public static T elementPower( T A, T B, @Nullable T output ) { return ImplCommonOps_FDRM.elementPower(A, B, output); } /** *

* Element-wise power operation
* cij = a ^ bij *

* * @param a left scalar * @param B right side * @param output output (modified) */ public static T elementPower( float a, T B, @Nullable T output ) { return ImplCommonOps_FDRM.elementPower(a, B, output); } /** *

* Element-wise power operation
* cij = aij ^ b *

* * @param A left side * @param b right scalar * @param output output (modified) */ public static T elementPower( T A, float b, @Nullable T output ) { return ImplCommonOps_FDRM.elementPower(A, b, output); } /** *

* Element-wise log operation
* cij = (float)Math.log(aij) *

* * @param A (input) A matrix * @param output (input/output) Storage for results. can be null. (modified) * @return The results */ public static T elementLog( T A, @Nullable T output ) { return ImplCommonOps_FDRM.elementLog(A, output); } /** *

* Element-wise exp operation
* cij = (float)Math.exp(aij) *

* * @param A (input) A matrix * @param output (input/output) Storage for results. can be null. (modified) * @return The results */ public static T elementExp( T A, @Nullable T output ) { return ImplCommonOps_FDRM.elementExp(A, output); } /** * Multiplies every element in row i by value[i]. * * @param values array. Not modified. * @param A Matrix. Modified. */ public static void multRows( float[] values, FMatrixRMaj A ) { if (values.length < A.numRows) { throw new IllegalArgumentException("Not enough elements in values."); } int index = 0; for (int row = 0; row < A.numRows; row++) { float v = values[row]; for (int col = 0; col < A.numCols; col++, index++) { A.data[index] *= v; } } } /** * Divides every element in row i by value[i]. * * @param values array. Not modified. * @param A Matrix. Modified. */ public static void divideRows( float[] values, FMatrixRMaj A ) { if (values.length < A.numRows) { throw new IllegalArgumentException("Not enough elements in values."); } int index = 0; for (int row = 0; row < A.numRows; row++) { float v = values[row]; for (int col = 0; col < A.numCols; col++, index++) { A.data[index] /= v; } } } /** * Multiplies every element in column i by value[i]. * * @param A Matrix. Modified. * @param values array. Not modified. */ public static void multCols( FMatrixRMaj A, float[] values ) { if (values.length < A.numCols) { throw new IllegalArgumentException("Not enough elements in values."); } int index = 0; for (int row = 0; row < A.numRows; row++) { for (int col = 0; col < A.numCols; col++, index++) { A.data[index] *= values[col]; } } } /** * Divides every element in column i by value[i]. * * @param A Matrix. Modified. * @param values array. Not modified. */ public static void divideCols( FMatrixRMaj A, float[] values ) { if (values.length < A.numCols) { throw new IllegalArgumentException("Not enough elements in values."); } int index = 0; for (int row = 0; row < A.numRows; row++) { for (int col = 0; col < A.numCols; col++, index++) { A.data[index] /= values[col]; } } } /** * Equivalent to multiplying a matrix B by the inverse of two diagonal matrices. * B = inv(A)*B*inv(C), where A=diag(a) and C=diag(c). * * @param diagA Array of length offsteA + B.numRows * @param offsetA First index in A * @param B Rectangular matrix * @param diagC Array of length indexC + B.numCols * @param offsetC First index in C */ public static void divideRowsCols( float[] diagA, int offsetA, FMatrixRMaj B, float[] diagC, int offsetC ) { if (diagA.length - offsetA < B.numRows) { throw new IllegalArgumentException("Not enough elements in diagA."); } if (diagC.length - offsetC < B.numCols) { throw new IllegalArgumentException("Not enough elements in diagC."); } final int rows = B.numRows; final int cols = B.numCols; int index = 0; for (int row = 0; row < rows; row++) { float va = diagA[offsetA + row]; for (int col = 0; col < cols; col++, index++) { B.data[index] /= va*diagC[offsetC + col]; } } } /** *

* Computes the sum of each row in the input matrix and returns the results in a vector:
*
* bj = sum(i=1:n ; aji) *

* * @param input INput matrix whose rows are summed. * @param output Optional storage for output. Reshaped into a column. Modified. * @return Vector containing the sum of each row in the input. */ public static FMatrixRMaj sumRows( FMatrixRMaj input, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, input.numRows, 1); for (int row = 0; row < input.numRows; row++) { float total = 0; int end = (row + 1)*input.numCols; for (int index = row*input.numCols; index < end; index++) { total += input.data[index]; } output.set(row, total); } return output; } /** *

* Finds the element with the minimum value along each row in the input matrix and returns the results in a vector:
*
* bj = min(i=1:n ; aji) *

* * @param input Input matrix * @param output Optional storage for output. Reshaped into a column. Modified. * @return Vector containing the sum of each row in the input. */ public static FMatrixRMaj minRows( FMatrixRMaj input, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, input.numRows, 1); for (int row = 0; row < input.numRows; row++) { float min = Float.MAX_VALUE; int end = (row + 1)*input.numCols; for (int index = row*input.numCols; index < end; index++) { float v = input.data[index]; if (v < min) min = v; } output.set(row, min); } return output; } /** *

* Finds the element with the maximum value along each row in the input matrix and returns the results in a vector:
*
* bj = max(i=1:n ; aji) *

* * @param input Input matrix * @param output Optional storage for output. Reshaped into a column. Modified. * @return Vector containing the sum of each row in the input. */ public static FMatrixRMaj maxRows( FMatrixRMaj input, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, input.numRows, 1); for (int row = 0; row < input.numRows; row++) { float max = -Float.MAX_VALUE; int end = (row + 1)*input.numCols; for (int index = row*input.numCols; index < end; index++) { float v = input.data[index]; if (v > max) max = v; } output.set(row, max); } return output; } /** *

* Computes the sum of each column in the input matrix and returns the results in a vector:
*
* bj = sum(i=1:m ; aij) *

* * @param input Input matrix * @param output Optional storage for output. Reshaped into a row vector. Modified. * @return Vector containing the sum of each column */ public static FMatrixRMaj sumCols( FMatrixRMaj input, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, 1, input.numCols); for (int cols = 0; cols < input.numCols; cols++) { float total = 0; int index = cols; int end = index + input.numCols*input.numRows; for (; index < end; index += input.numCols) { total += input.data[index]; } output.set(cols, total); } return output; } /** *

* Finds the element with the minimum value along column in the input matrix and returns the results in a vector:
*
* bj = min(i=1:m ; aij) *

* * @param input Input matrix * @param output Optional storage for output. Reshaped into a row vector. Modified. * @return Vector containing the minimum of each column */ public static FMatrixRMaj minCols( FMatrixRMaj input, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, 1, input.numCols); for (int cols = 0; cols < input.numCols; cols++) { float minimum = Float.MAX_VALUE; int index = cols; int end = index + input.numCols*input.numRows; for (; index < end; index += input.numCols) { float v = input.data[index]; if (v < minimum) minimum = v; } output.set(cols, minimum); } return output; } /** *

* Finds the element with the minimum value along column in the input matrix and returns the results in a vector:
*
* bj = min(i=1:m ; aij) *

* * @param input Input matrix * @param output Optional storage for output. Reshaped into a row vector. Modified. * @return Vector containing the maximum of each column */ public static FMatrixRMaj maxCols( FMatrixRMaj input, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, 1, input.numCols); for (int cols = 0; cols < input.numCols; cols++) { float maximum = -Float.MAX_VALUE; int index = cols; int end = index + input.numCols*input.numRows; for (; index < end; index += input.numCols) { float v = input.data[index]; if (v > maximum) maximum = v; } output.set(cols, maximum); } return output; } /** *

Performs the following operation:
*
* a = a + b
* aij = aij + bij
*

* * @param a (input/output) A Matrix. Modified. * @param b (input) A Matrix. Not modified. */ public static void addEquals( FMatrixD1 a, FMatrixD1 b ) { UtilEjml.checkSameShape(a, b, true); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { a.plus(i, b.get(i)); } } /** *

Performs the following operation:
*
* a = a + β * b
* aij = aij + β * bij *

* * @param beta The number that matrix 'b' is multiplied by. * @param a (input/output) A Matrix. Modified. * @param b (input) A Matrix. Not modified. */ public static void addEquals( FMatrixD1 a, float beta, FMatrixD1 b ) { UtilEjml.checkSameShape(a, b, true); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { a.plus(i, beta*b.get(i)); } } /** *

Performs the following operation:
*
* c = a + b
* cij = aij + bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a A Matrix. Not modified. * @param b A Matrix. Not modified. * @param output (output) A Matrix where the results are stored. Can be null. Modified. * @return The results. */ public static T add( final T a, final T b, @Nullable T output ) { UtilEjml.checkSameShape(a, b, true); output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.set(i, a.get(i) + b.get(i)); } return output; } /** *

Performs the following operation:
*
* c = a + β * b
* cij = aij + β * bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a A Matrix. Not modified. * @param beta Scaling factor for matrix b. * @param b A Matrix. Not modified. * @param output (output) A Matrix where the results are stored. Can be null. Modified. * @return The results. */ public static T add( T a, float beta, T b, @Nullable T output ) { UtilEjml.checkSameShape(a, b, true); output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.set(i, a.get(i) + beta*b.get(i)); } return output; } /** *

Performs the following operation:
*
* c = α * a + β * b
* cij = α * aij + β * bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param alpha A scaling factor for matrix a. * @param a A Matrix. Not modified. * @param beta A scaling factor for matrix b. * @param b A Matrix. Not modified. * @param output (output) A Matrix where the results are stored. Can be null. Modified. * @return The results. */ public static T add( float alpha, T a, float beta, T b, @Nullable T output ) { UtilEjml.checkSameShape(a, b, true); output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.set(i, alpha*a.get(i) + beta*b.get(i)); } return output; } /** *

Performs the following operation:
*
* c = α * a + b
* cij = α * aij + bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param alpha A scaling factor for matrix a. * @param a A Matrix. Not modified. * @param b A Matrix. Not modified. * @param output (output) A Matrix where the results are stored. Can be null. Modified. * @return The results. */ public static T add( float alpha, T a, T b, T output ) { UtilEjml.checkSameShape(a, b, true); output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.set(i, alpha*a.get(i) + b.get(i)); } return output; } /** *

Performs an in-place scalar addition:
*
* a = a + val
* aij = aij + val
*

* * @param a A matrix. Modified. * @param val The value that's added to each element. */ public static void add( FMatrixD1 a, float val ) { final int length = a.getNumElements(); for (int i = 0; i < length; i++) { a.plus(i, val); } } /** *

Performs scalar addition:
*
* c = a + val
* cij = aij + val
*

* * @param a A matrix. Not modified. * @param val The value that's added to each element. * @param output (output) Storage for results. Can be null. Modified. * @return The resulting matrix */ public static T add( T a, float val, T output ) { output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.data[i] = a.data[i] + val; } return output; } /** *

Performs matrix scalar subtraction:
*
* c = a - val
* cij = aij - val
*

* * @param a (input) A matrix. Not modified. * @param val (input) The value that's subtracted to each element. * @param output (output) Storage for results. Can be null. Modified. * @return The resulting matrix */ public static T subtract( T a, float val, @Nullable T output ) { output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.data[i] = a.data[i] - val; } return output; } /** *

Performs matrix scalar subtraction:
*
* c = val - a
* cij = val - aij
*

* * @param val (input) The value that's subtracted to each element. * @param a (input) A matrix. Not modified. * @param output (output) Storage for results. Can be null. Modified. * @return The resulting matrix */ public static T subtract( float val, T a, @Nullable T output ) { output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.data[i] = val - a.data[i]; } return output; } /** *

Performs the following subtraction operation:
*
* a = a - b
* aij = aij - bij *

* * @param a (input) A Matrix. Modified. * @param b (input) A Matrix. Not modified. */ public static void subtractEquals( FMatrixD1 a, FMatrixD1 b ) { UtilEjml.checkSameShape(a, b, true); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { a.data[i] -= b.data[i]; } } /** *

Performs the following subtraction operation:
*
* c = a - b
* cij = aij - bij *

*

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a (input) A Matrix. Not modified. * @param b (input) A Matrix. Not modified. * @param output (output) A Matrix. Can be null. Modified. * @return The resulting matrix */ public static T subtract( T a, T b, @Nullable T output ) { UtilEjml.checkSameShape(a, b, true); output = UtilEjml.reshapeOrDeclare(output, a); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { output.data[i] = a.data[i] - b.data[i]; } return output; } /** *

* Performs an in-place element by element scalar multiplication.
*
* aij = α*aij *

* * @param a The matrix that is to be scaled. Modified. * @param alpha the amount each element is multiplied by. */ public static void scale( float alpha, FMatrixD1 a ) { // on very small matrices (2 by 2) the call to getNumElements() can slow it down // slightly compared to other libraries since it involves an extra multiplication. final int size = a.getNumElements(); for (int i = 0; i < size; i++) { a.data[i] *= alpha; } } /** *

* Performs an element by element scalar multiplication.
*
* bij = α*aij *

* * @param alpha the amount each element is multiplied by. * @param a The matrix that is to be scaled. Not modified. * @param b Where the scaled matrix is stored. Modified. */ public static void scale( float alpha, FMatrixD1 a, FMatrixD1 b ) { b.reshape(a.numRows, a.numCols); final int size = a.getNumElements(); for (int i = 0; i < size; i++) { b.data[i] = a.data[i]*alpha; } } /** * In-place scaling of a row in A * * @param alpha scale factor * @param A matrix * @param row which row in A */ public static void scaleRow( float alpha, FMatrixRMaj A, int row ) { int idx = row*A.numCols; for (int col = 0; col < A.numCols; col++) { A.data[idx++] *= alpha; } } /** * In-place scaling of a column in A * * @param alpha scale factor * @param A matrix * @param col which row in A */ public static void scaleCol( float alpha, FMatrixRMaj A, int col ) { int idx = col; for (int row = 0; row < A.numRows; row++, idx += A.numCols) { A.data[idx] *= alpha; } } /** *

* Performs an in-place element by element scalar division with the scalar on top.
*
* aij = α/aij *

* * @param a (input/output) The matrix whose elements are divide the scalar. Modified. * @param alpha top value in division */ public static void divide( float alpha, FMatrixD1 a ) { final int size = a.getNumElements(); for (int i = 0; i < size; i++) { a.data[i] = alpha/a.data[i]; } } /** *

* Performs an in-place element by element scalar division with the scalar on bottom.
*
* aij = aij/α *

* * @param a (input/output) The matrix whose elements are to be divided. Modified. * @param alpha the amount each element is divided by. */ public static void divide( FMatrixD1 a, float alpha ) { final int size = a.getNumElements(); for (int i = 0; i < size; i++) { a.data[i] /= alpha; } } /** *

* Performs an element by element scalar division with the scalar on top.
*
* bij = α/aij *

* * @param alpha The numerator. * @param input The matrix whose elements are the divisor. Not modified. * @param output Where the results are stored. Modified. Can be null. * @return The resulting matrix */ public static T divide( float alpha, T input, T output ) { output = UtilEjml.reshapeOrDeclare(output, input); final int size = input.getNumElements(); for (int i = 0; i < size; i++) { output.data[i] = alpha/input.data[i]; } return output; } /** *

* Performs an element by element scalar division with the scalar on botton.
*
* bij = aij /α *

* * @param input The matrix whose elements are to be divided. Not modified. * @param alpha the amount each element is divided by. * @param output Where the results are stored. Modified. Can be null. * @return The resulting matrix */ public static T divide( T input, float alpha, @Nullable T output ) { output = UtilEjml.reshapeOrDeclare(output, input); final int size = input.getNumElements(); for (int i = 0; i < size; i++) { output.data[i] = input.data[i]/alpha; } return output; } /** *

* Changes the sign of every element in the matrix.
*
* aij = -aij *

* * @param a A matrix. Modified. */ public static void changeSign( FMatrixD1 a ) { final int size = a.getNumElements(); for (int i = 0; i < size; i++) { a.data[i] = -a.data[i]; } } /** *

* Changes the sign of every element in the matrix.
*
* outputij = -inputij *

* * @param input A matrix. Modified. */ public static T changeSign( T input, @Nullable T output ) { output = UtilEjml.reshapeOrDeclare(output, input); final int size = input.getNumElements(); for (int i = 0; i < size; i++) { output.data[i] = -input.data[i]; } return output; } /** *

* Sets every element in the matrix to the specified value.
*
* aij = value *

* * @param a A matrix whose elements are about to be set. Modified. * @param value The value each element will have. */ public static void fill( FMatrixD1 a, float value ) { Arrays.fill(a.data, 0, a.getNumElements(), value); } /** *

* Puts the augmented system matrix into reduced row echelon form (RREF) using Gauss-Jordan * elimination with row (partial) pivots. A matrix is said to be in RREF is the following conditions are true: *

* *
    *
  1. If a row has non-zero entries, then the first non-zero entry is 1. This is known as the leading one.
  2. *
  3. If a column contains a leading one then all other entries in that column are zero.
  4. *
  5. If a row contains a leading 1, then each row above contains a leading 1 further to the left.
  6. *
* *

* [1] Page 19 in, Otter Bretscherm "Linear Algebra with Applications" Prentice-Hall Inc, 1997 *

* * @param A Input matrix. Unmodified. * @param numUnknowns Number of unknowns/columns that are reduced. Set to -1 to default to * A.numCols, which works for most applications. * @param reduced Storage for reduced echelon matrix. If null then a new matrix is returned. Modified. * @return Reduced echelon form of A * @see RrefGaussJordanRowPivot_FDRM */ public static FMatrixRMaj rref( FMatrixRMaj A, int numUnknowns, @Nullable FMatrixRMaj reduced ) { reduced = UtilEjml.reshapeOrDeclare(reduced, A); if (numUnknowns <= 0) numUnknowns = A.numCols; ReducedRowEchelonForm_F32 alg = new RrefGaussJordanRowPivot_FDRM(); alg.setTolerance(elementMaxAbs(A)*UtilEjml.F_EPS*Math.max(A.numRows, A.numCols)); reduced.setTo(A); alg.reduce(reduced, numUnknowns); return reduced; } /** * Applies the > operator to each element in A. Results are stored in a boolean matrix. * * @param A Input matrx * @param value value each element is compared against * @param output (Optional) Storage for results. Can be null. Is reshaped. * @return Boolean matrix with results */ public static BMatrixRMaj elementLessThan( FMatrixRMaj A, float value, BMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] < value; } return output; } /** * Applies the ≥ operator to each element in A. Results are stored in a boolean matrix. * * @param A Input matrix * @param value value each element is compared against * @param output (Optional) Storage for results. Can be null. Is reshaped. * @return Boolean matrix with results */ public static BMatrixRMaj elementLessThanOrEqual( FMatrixRMaj A, float value, BMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] <= value; } return output; } /** * Applies the > operator to each element in A. Results are stored in a boolean matrix. * * @param A Input matrix * @param value value each element is compared against * @param output (Optional) Storage for results. Can be null. Is reshaped. * @return Boolean matrix with results */ public static BMatrixRMaj elementMoreThan( FMatrixRMaj A, float value, BMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] > value; } return output; } /** * Applies the ≥ operator to each element in A. Results are stored in a boolean matrix. * * @param A Input matrix * @param value value each element is compared against * @param output (Optional) Storage for results. Can be null. Is reshaped. * @return Boolean matrix with results */ public static BMatrixRMaj elementMoreThanOrEqual( FMatrixRMaj A, float value, BMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] >= value; } return output; } /** * Applies the < operator to each element in A. Results are stored in a boolean matrix. * * @param A Input matrix * @param B Input matrix * @param output (Optional) Storage for results. Can be null. Is reshaped. * @return Boolean matrix with results */ public static BMatrixRMaj elementLessThan( FMatrixRMaj A, FMatrixRMaj B, BMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] < B.data[i]; } return output; } /** * Applies the A ≤ B operator to each element. Results are stored in a boolean matrix. * * @param A Input matrix * @param B Input matrix * @param output (Optional) Storage for results. Can be null. Is reshaped. * @return Boolean matrix with results */ public static BMatrixRMaj elementLessThanOrEqual( FMatrixRMaj A, FMatrixRMaj B, BMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, A.numRows, A.numCols); int N = A.getNumElements(); for (int i = 0; i < N; i++) { output.data[i] = A.data[i] <= B.data[i]; } return output; } /** * Returns a row matrix which contains all the elements in A which are flagged as true in 'marked' * * @param A Input matrix * @param marked Input matrix marking elements in A * @param output Storage for output row vector. Can be null. Will be reshaped. * @return Row vector with marked elements */ public static FMatrixRMaj elements( FMatrixRMaj A, BMatrixRMaj marked, @Nullable FMatrixRMaj output ) { checkSameShape(A, marked, false); if (output == null) output = new FMatrixRMaj(1, 1); output.reshape(countTrue(marked), 1); int N = A.getNumElements(); int index = 0; for (int i = 0; i < N; i++) { if (marked.data[i]) { output.data[index++] = A.data[i]; } } return output; } /** * Counts the number of elements in A which are true * * @param A input matrix * @return number of true elements */ public static int countTrue( BMatrixRMaj A ) { int total = 0; int N = A.getNumElements(); for (int i = 0; i < N; i++) { if (A.data[i]) total++; } return total; } /** * output = [a , b] */ public static FMatrixRMaj concatColumns( FMatrixRMaj a, FMatrixRMaj b, @Nullable FMatrixRMaj output ) { int rows = Math.max(a.numRows, b.numRows); int cols = a.numCols + b.numCols; output = reshapeOrDeclare(output,rows,cols); output.zero(); insert(a, output, 0, 0); insert(b, output, 0, a.numCols); return output; } /** *

Concatinates all the matrices together along their columns. If the rows do not match the upper elements * are set to zero.

* * A = [ m[0] , ... , m[n-1] ] * * @param m Set of matrices * @return Resulting matrix */ public static FMatrixRMaj concatColumnsMulti( FMatrixRMaj... m ) { int rows = 0; int cols = 0; for (int i = 0; i < m.length; i++) { rows = Math.max(rows, m[i].numRows); cols += m[i].numCols; } FMatrixRMaj R = new FMatrixRMaj(rows, cols); int col = 0; for (int i = 0; i < m.length; i++) { insert(m[i], R, 0, col); col += m[i].numCols; } return R; } /** * output = [a ; b] */ public static void concatRows( FMatrixRMaj a, FMatrixRMaj b, FMatrixRMaj output ) { int rows = a.numRows + b.numRows; int cols = Math.max(a.numCols, b.numCols); output.reshape(rows, cols); output.zero(); insert(a, output, 0, 0); insert(b, output, a.numRows, 0); } /** *

Concatinates all the matrices together along their columns. If the rows do not match the upper elements * are set to zero.

* * A = [ m[0] ; ... ; m[n-1] ] * * @param m Set of matrices * @return Resulting matrix */ public static FMatrixRMaj concatRowsMulti( FMatrixRMaj... m ) { int rows = 0; int cols = 0; for (int i = 0; i < m.length; i++) { rows += m[i].numRows; cols = Math.max(cols, m[i].numCols); } FMatrixRMaj R = new FMatrixRMaj(rows, cols); int row = 0; for (int i = 0; i < m.length; i++) { insert(m[i], R, row, 0); row += m[i].numRows; } return R; } /** * Applies the row permutation specified by the vector to the input matrix and save the results * in the output matrix. output[perm[j],:] = input[j,:] * * @param pinv (Input) Inverse permutation vector. Specifies new order of the rows. * @param input (Input) Matrix which is to be permuted * @param output (Output) Matrix which has the permutation stored in it. Is reshaped. */ public static FMatrixRMaj permuteRowInv( int[] pinv, FMatrixRMaj input, FMatrixRMaj output ) { if (input.numRows > pinv.length) throw new MatrixDimensionException("permutation vector must have at least as many elements as input has rows"); output = UtilEjml.reshapeOrDeclare(output, input.numRows, input.numCols); int m = input.numCols; for (int row = 0; row < input.numRows; row++) { System.arraycopy(input.data, row*m, output.data, pinv[row]*m, m); } return output; } /** *

Performs absolute value of a matrix:
*
* c = abs(a)
* cij = abs(aij) *

* * @param a A matrix. Not modified. * @param c A matrix. Modified. */ public static void abs( FMatrixD1 a, FMatrixD1 c ) { c.reshape(a.numRows, a.numCols); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { c.data[i] = Math.abs(a.data[i]); } } /** *

Performs absolute value of a matrix:
*
* a = abs(a)
* aij = abs(aij) *

* * @param a A matrix. Modified. */ public static void abs( FMatrixD1 a ) { final int length = a.getNumElements(); for (int i = 0; i < length; i++) { a.data[i] = Math.abs(a.data[i]); } } /** * Given a symmetric matrix which is represented by a lower triangular matrix convert it back into * a full symmetric matrix. * * @param A (Input) Lower triangular matrix (Output) symmetric matrix */ public static void symmLowerToFull( FMatrixRMaj A ) { if (A.numRows != A.numCols) throw new MatrixDimensionException("Must be a square matrix"); final int cols = A.numCols; for (int row = 0; row < A.numRows; row++) { for (int col = row + 1; col < cols; col++) { A.data[row*cols + col] = A.data[col*cols + row]; } } } /** * Given a symmetric matrix which is represented by a lower triangular matrix convert it back into * a full symmetric matrix. * * @param A (Input) Lower triangular matrix (Output) symmetric matrix */ public static void symmUpperToFull( FMatrixRMaj A ) { if (A.numRows != A.numCols) throw new MatrixDimensionException("Must be a square matrix"); final int cols = A.numCols; for (int row = 0; row < A.numRows; row++) { for (int col = 0; col <= row; col++) { A.data[row*cols + col] = A.data[col*cols + row]; } } } /** * This applies a given unary function on every value stored in the matrix * *
     * output[i,j] = func(input[i,j])
     * 
* * A and B can be the same instance. * * @param input (Input) input matrix. Not modified * @param func Unary function accepting a float * @param output (Output) Matrix. Can be same instance as A. Modified. * @return The output matrix */ public static FMatrixRMaj apply( FMatrixRMaj input, FOperatorUnary func, @Nullable FMatrixRMaj output ) { output = UtilEjml.reshapeOrDeclare(output, input.numRows, input.numCols); for (int i = 0; i < input.data.length; i++) { output.data[i] = func.apply(input.data[i]); } return output; } public static FMatrixRMaj apply( FMatrixRMaj input, FOperatorUnary func ) { return apply(input, func, input); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy