All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.decomposition.UtilDecompositons_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row.decomposition;

import javax.annotation.Generated;
import org.ejml.data.FMatrixRMaj;
import org.ejml.dense.row.CommonOps_FDRM;
import org.jetbrains.annotations.Nullable;

/**
 * Helper functions for generic decompsotions.
 *
 * @author Peter Abeles
 */
@Generated("org.ejml.dense.row.decomposition.UtilDecompositons_DDRM")
public class UtilDecompositons_FDRM {

    public static FMatrixRMaj ensureIdentity( @Nullable FMatrixRMaj A, int numRows, int numCols ) {
        if (A == null) {
            return CommonOps_FDRM.identity(numRows, numCols);
        }
        A.reshape(numRows, numCols);
        CommonOps_FDRM.setIdentity(A);
        return A;
    }

    public static FMatrixRMaj ensureZeros( @Nullable FMatrixRMaj A, int numRows, int numCols ) {
        if (A == null) {
            return new FMatrixRMaj(numRows, numCols);
        }
        A.reshape(numRows, numCols);
        A.zero();
        return A;
    }

    /**
     * Creates a zeros matrix only if A does not already exist.  If it does exist it will fill
     * the lower triangular portion with zeros.
     */
    public static FMatrixRMaj checkZerosLT( @Nullable FMatrixRMaj A, int numRows, int numCols ) {
        if (A == null) {
            return new FMatrixRMaj(numRows, numCols);
        } else if (numRows != A.numRows || numCols != A.numCols) {
            A.reshape(numRows, numCols);
            A.zero();
        } else {
            for (int i = 0; i < A.numRows; i++) {
                int index = i*A.numCols;
                int end = index + Math.min(i, A.numCols);
                while (index < end) {
                    A.data[index++] = 0;
                }
            }
        }
        return A;
    }

    /**
     * Creates a zeros matrix only if A does not already exist.  If it does exist it will fill
     * the upper triangular portion with zeros.
     */
    public static FMatrixRMaj checkZerosUT( @Nullable FMatrixRMaj A, int numRows, int numCols ) {
        if (A == null) {
            return new FMatrixRMaj(numRows, numCols);
        } else if (numRows != A.numRows || numCols != A.numCols)
            throw new IllegalArgumentException("Input is not " + numRows + " x " + numCols + " matrix");
        else {
            int maxRows = Math.min(A.numRows, A.numCols);
            for (int i = 0; i < maxRows; i++) {
                int index = i*A.numCols + i + 1;
                int end = i*A.numCols + A.numCols;
                while (index < end) {
                    A.data[index++] = 0;
                }
            }
        }
        return A;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy