All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.MatrixFeatures_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.ejml.dense.row;

import javax.annotation.Generated;
import org.ejml.UtilEjml;
import org.ejml.data.*;
import org.ejml.dense.row.decomposition.chol.CholeskyDecompositionInner_FDRM;
import org.ejml.dense.row.factory.DecompositionFactory_FDRM;
import org.ejml.dense.row.mult.VectorVectorMult_FDRM;
import org.ejml.interfaces.decomposition.EigenDecomposition_F32;
import org.ejml.interfaces.decomposition.LUDecomposition;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F32;

/**
 * 

* Used to compute features that describe the structure of a matrix. *

* *

* Unless explicitly stated otherwise it is assumed that the elements of input matrices * contain only real numbers. If an element is NaN or infinite then the behavior is undefined. * See IEEE 754 for more information on this issue. *

* * @author Peter Abeles */ @Generated("org.ejml.dense.row.MatrixFeatures_DDRM") public class MatrixFeatures_FDRM { private MatrixFeatures_FDRM() {} /** * Checks to see if any element in the matrix is NaN. * * @param m A matrix. Not modified. * @return True if any element in the matrix is NaN. */ public static boolean hasNaN( FMatrixD1 m ) { int length = m.getNumElements(); for (int i = 0; i < length; i++) { if (Float.isNaN(m.get(i))) return true; } return false; } /** * Checks to see if any element in the matrix is NaN of Infinite. * * @param m A matrix. Not modified. * @return True if any element in the matrix is NaN of Infinite. */ public static boolean hasUncountable( FMatrixD1 m ) { int length = m.getNumElements(); for (int i = 0; i < length; i++) { float a = m.get(i); if (Float.isNaN(a) || Float.isInfinite(a)) return true; } return false; } /** * Checks to see all the elements in the matrix are zeros * * @param m A matrix. Not modified. * @return True if all elements are zeros or false if not */ public static boolean isZeros( FMatrixD1 m, float tol ) { int length = m.getNumElements(); for (int i = 0; i < length; i++) { if (Math.abs(m.get(i)) > tol) return false; } return true; } /** * Checks to see if the matrix is a vector or not. * * @param mat A matrix. Not modified. * @return True if it is a vector and false if it is not. */ public static boolean isVector( Matrix mat ) { return (mat.getNumCols() == 1 || mat.getNumRows() == 1); } /** *

* Checks to see if the matrix is positive definite. *

*

* xT A x > 0
* for all x where x is a non-zero vector and A is a symmetric matrix. *

* * @param A square symmetric matrix. Not modified. * @return True if it is positive definite and false if it is not. */ public static boolean isPositiveDefinite( FMatrixRMaj A ) { if (!isSquare(A)) return false; CholeskyDecompositionInner_FDRM chol = new CholeskyDecompositionInner_FDRM(true); if (chol.inputModified()) A = A.copy(); return chol.decompose(A); } /** *

* Checks to see if the matrix is positive semidefinite: *

*

* xT A x ≥ 0
* for all x where x is a non-zero vector and A is a symmetric matrix. *

* * @param A square symmetric matrix. Not modified. * @return True if it is positive semidefinite and false if it is not. */ public static boolean isPositiveSemidefinite( FMatrixRMaj A ) { if (!isSquare(A)) return false; EigenDecomposition_F32 eig = DecompositionFactory_FDRM.eig(A.numCols, false); if (eig.inputModified()) A = A.copy(); eig.decompose(A); for (int i = 0; i < A.numRows; i++) { Complex_F32 v = eig.getEigenvalue(i); if (v.getReal() < 0) return false; } return true; } /** * Checks to see if it is a square matrix. A square matrix has * the same number of rows and columns. * * @param mat A matrix. Not modified. * @return True if it is a square matrix and false if it is not. */ public static boolean isSquare( FMatrixD1 mat ) { return mat.numCols == mat.numRows; } /** *

* Returns true if the matrix is symmetric within the tolerance. Only square matrices can be * symmetric. *

*

* A matrix is symmetric if:
* |aij - aji| ≤ tol *

* * @param m A matrix. Not modified. * @param tol Tolerance for how similar two elements need to be. * @return true if it is symmetric and false if it is not. */ public static boolean isSymmetric( FMatrixRMaj m, float tol ) { if (m.numCols != m.numRows) return false; float max = CommonOps_FDRM.elementMaxAbs(m); for (int i = 0; i < m.numRows; i++) { for (int j = 0; j < i; j++) { float a = m.get(i, j); float b = m.get(j, i); float diff = Math.abs(a - b); if (!(diff <= tol*max)) { return false; } } } return true; } /** *

* Returns true if the matrix is perfectly symmetric. Only square matrices can be symmetric. *

*

* A matrix is symmetric if:
* aij == aji *

* * @param m A matrix. Not modified. * @return true if it is symmetric and false if it is not. */ public static boolean isSymmetric( FMatrixRMaj m ) { return isSymmetric(m, 0.0f); } /** *

* Checks to see if a matrix is skew symmetric with in tolerance:
*
* -A = AT
* or
* |aij + aji| ≤ tol *

* * @param A The matrix being tested. * @param tol Tolerance for being skew symmetric. * @return True if it is skew symmetric and false if it is not. */ public static boolean isSkewSymmetric( FMatrixRMaj A, float tol ) { if (A.numCols != A.numRows) return false; for (int i = 0; i < A.numRows; i++) { for (int j = 0; j < i; j++) { float a = A.get(i, j); float b = A.get(j, i); float diff = Math.abs(a + b); if (!(diff <= tol)) { return false; } } } return true; } /** * Checks to see if the two matrices are inverses of each other. * * @param a A matrix. Not modified. * @param b A matrix. Not modified. */ public static boolean isInverse( FMatrixRMaj a, FMatrixRMaj b, float tol ) { if (a.numRows != b.numRows || a.numCols != b.numCols) { return false; } int numRows = a.numRows; int numCols = a.numCols; for (int i = 0; i < numRows; i++) { for (int j = 0; j < numCols; j++) { float total = 0; for (int k = 0; k < numCols; k++) { total += a.get(i, k)*b.get(k, j); } if (i == j) { if (!(Math.abs(total - 1) <= tol)) return false; } else if (!(Math.abs(total) <= tol)) return false; } } return true; } /** *

* Checks to see if each element in the two matrices are within tolerance of * each other: tol ≥ |aij - bij|. *

* *

* NOTE: If any of the elements are not countable then false is returned.
* NOTE: If a tolerance of zero is passed in this is equivalent to calling * {@link #isEquals(FMatrixD1, FMatrixD1)} *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param tol How close to being identical each element needs to be. * @return true if equals and false otherwise. */ public static boolean isEquals( FMatrixD1 a, FMatrixD1 b, float tol ) { if (a.numRows != b.numRows || a.numCols != b.numCols) { return false; } if (tol == 0.0f) return isEquals(a, b); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { if (!(tol >= Math.abs(a.get(i) - b.get(i)))) { return false; } } return true; } /** *

* Checks to see if each element in the upper or lower triangular portion of the two matrices are within tolerance of * each other: tol ≥ |aij - bij|. *

* *

* NOTE: If any of the elements are not countable then false is returned.
* NOTE: If a tolerance of zero is passed in this is equivalent to calling * {@link #isEquals(FMatrixD1, FMatrixD1)} *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param upper true of upper triangular and false for lower. * @param tol How close to being identical each element needs to be. * @return true if equals and false otherwise. */ public static boolean isEqualsTriangle( FMatrix a, FMatrix b, boolean upper, float tol ) { if (a.getNumRows() != b.getNumRows() || a.getNumCols() != b.getNumCols()) { return false; } if (upper) { for (int i = 0; i < a.getNumRows(); i++) { for (int j = i; j < a.getNumCols(); j++) { if (Math.abs(a.get(i, j) - b.get(i, j)) > tol) return false; } } } else { for (int i = 0; i < a.getNumRows(); i++) { int end = Math.min(i, a.getNumCols() - 1); for (int j = 0; j <= end; j++) { if (Math.abs(a.get(i, j) - b.get(i, j)) > tol) return false; } } } return true; } /** *

* Checks to see if each element in the two matrices are equal: * aij == bij *

* *

* NOTE: If any of the elements are NaN then false is returned. If two corresponding * elements are both positive or negative infinity then they are equal. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @return true if identical and false otherwise. */ public static boolean isEquals( FMatrixD1 a, FMatrixD1 b ) { if (a.numRows != b.numRows || a.numCols != b.numCols) { return false; } final int length = a.getNumElements(); for (int i = 0; i < length; i++) { if (!(a.get(i) == b.get(i))) { return false; } } return true; } /** *

* Checks to see if each element in the two matrices are equal: * aij == bij *

* *

* NOTE: If any of the elements are NaN then false is returned. If two corresponding * elements are both positive or negative infinity then they are equal. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @return true if identical and false otherwise. */ public static boolean isEquals( BMatrixRMaj a, BMatrixRMaj b ) { if (a.numRows != b.numRows || a.numCols != b.numCols) { return false; } final int length = a.getNumElements(); for (int i = 0; i < length; i++) { if (!(a.get(i) == b.get(i))) { return false; } } return true; } /** *

* Checks to see if each corresponding element in the two matrices are * within tolerance of each other or have the some symbolic meaning. This * can handle NaN and Infinite numbers. *

* *

* If both elements are countable then the following equality test is used:
* |aij - bij| ≤ tol.
* Otherwise both numbers must both be Float.NaN, Float.POSITIVE_INFINITY, or * Float.NEGATIVE_INFINITY to be identical. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param tol Tolerance for equality. * @return true if identical and false otherwise. */ public static boolean isIdentical( FMatrixD1 a, FMatrixD1 b, float tol ) { if (a.numRows != b.numRows || a.numCols != b.numCols) { return false; } if (tol < 0) throw new IllegalArgumentException("Tolerance must be greater than or equal to zero."); final int length = a.getNumElements(); for (int i = 0; i < length; i++) { if (!UtilEjml.isIdentical(a.get(i), b.get(i), tol)) return false; } return true; } /** *

* Checks to see if a matrix is orthogonal or isometric. *

* * @param Q The matrix being tested. Not modified. * @param tol Tolerance. * @return True if it passes the test. */ public static boolean isOrthogonal( FMatrixRMaj Q, float tol ) { if (Q.numRows < Q.numCols) { throw new IllegalArgumentException("The number of rows must be more than or equal to the number of columns"); } FMatrixRMaj[] u = CommonOps_FDRM.columnsToVector(Q, null); for (int i = 0; i < u.length; i++) { FMatrixRMaj a = u[i]; for (int j = i + 1; j < u.length; j++) { float val = VectorVectorMult_FDRM.innerProd(a, u[j]); if (!(Math.abs(val) <= tol)) return false; } } return true; } /** * Checks to see if the rows of the provided matrix are linearly independent. * * @param A Matrix whose rows are being tested for linear independence. * @return true if linearly independent and false otherwise. */ public static boolean isRowsLinearIndependent( FMatrixRMaj A ) { // LU decomposition LUDecomposition lu = DecompositionFactory_FDRM.lu(A.numRows, A.numCols); if (lu.inputModified()) A = A.copy(); if (!lu.decompose(A)) throw new RuntimeException("Decompositon failed?"); // if they are linearly independent it should not be singular return !lu.isSingular(); } /** * Checks to see if the provided matrix is within tolerance to an identity matrix. * * @param mat Matrix being examined. Not modified. * @param tol Tolerance. * @return True if it is within tolerance to an identify matrix. */ public static boolean isIdentity( FMatrixRMaj mat, float tol ) { // see if the result is an identity matrix int index = 0; for (int i = 0; i < mat.numRows; i++) { for (int j = 0; j < mat.numCols; j++) { if (i == j) { if (!(Math.abs(mat.get(index++) - 1) <= tol)) return false; } else { if (!(Math.abs(mat.get(index++)) <= tol)) return false; } } } return true; } /** * Checks to see if every value in the matrix is the specified value. * * @param mat The matrix being tested. Not modified. * @param val Checks to see if every element in the matrix has this value. * @param tol True if all the elements are within this tolerance. * @return true if the test passes. */ public static boolean isConstantVal( FMatrixRMaj mat, float val, float tol ) { // see if the result is an identity matrix int index = 0; for (int i = 0; i < mat.numRows; i++) { for (int j = 0; j < mat.numCols; j++) { if (!(Math.abs(mat.get(index++) - val) <= tol)) return false; } } return true; } /** * Checks to see if diagonal element are all not negative, i.e. greater than or equal to 0. * * @param a A matrix. Not modified. * @return True if diagonal element are all not negative. False otherwise. */ public static boolean isDiagonalNotNegative( FMatrixRMaj a ) { for (int i = 0; i < a.numRows; i++) { if (!(a.get(i, i) >= 0)) return false; } return true; } /** * Checks to see if all the diagonal elements in the matrix are positive. * * @param a A matrix. Not modified. * @return true if all the diagonal elements are positive, false otherwise. */ public static boolean isDiagonalPositive( FMatrixRMaj a ) { for (int i = 0; i < a.numRows; i++) { if (!(a.get(i, i) > 0)) return false; } return true; } // TODO write this public static boolean isFullRank( FMatrixRMaj a ) { throw new RuntimeException("Implement"); } /** *

* Checks to see if the two matrices are the negative of each other:
*
* aij = -bij *

* * @param a First matrix. Not modified. * @param b Second matrix. Not modified. * @param tol Numerical tolerance. * @return True if they are the negative of each other within tolerance. */ public static boolean isNegative( FMatrixD1 a, FMatrixD1 b, float tol ) { if (a.numRows != b.numRows || a.numCols != b.numCols) throw new IllegalArgumentException("Matrix dimensions must match"); int length = a.getNumElements(); for (int i = 0; i < length; i++) { if (!(Math.abs(a.get(i) + b.get(i)) <= tol)) return false; } return true; } /** *

* Checks to see if a matrix is upper triangular or Hessenberg. A Hessenberg matrix of degree N * has the following property:
*
* aij ≤ 0 for all i < j+N
*
* A triangular matrix is a Hessenberg matrix of degree 0. *

* * @param A Matrix being tested. Not modified. * @param hessenberg The degree of being hessenberg. * @param tol How close to zero the lower left elements need to be. * @return If it is an upper triangular/hessenberg matrix or not. */ public static boolean isUpperTriangle( FMatrixRMaj A, int hessenberg, float tol ) { for (int i = hessenberg + 1; i < A.numRows; i++) { int maxCol = Math.min(i - hessenberg, A.numCols); for (int j = 0; j < maxCol; j++) { if (!(Math.abs(A.unsafe_get(i, j)) <= tol)) { return false; } } } return true; } /** *

* Checks to see if a matrix is lower triangular or Hessenberg. A Hessenberg matrix of degree N * has the following property:
*
* aij ≤ 0 for all i < j+N
*
* A triangular matrix is a Hessenberg matrix of degree 0. *

* * @param A Matrix being tested. Not modified. * @param hessenberg The degree of being hessenberg. * @param tol How close to zero the lower left elements need to be. * @return If it is an upper triangular/hessenberg matrix or not. */ public static boolean isLowerTriangle( FMatrixRMaj A, int hessenberg, float tol ) { for (int i = 0; i < A.numRows - hessenberg - 1; i++) { for (int j = i + hessenberg + 1; j < A.numCols; j++) { if (!(Math.abs(A.unsafe_get(i, j)) <= tol)) { return false; } } } return true; } /** * Computes the rank of a matrix using a default tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @return The matrix's rank. */ public static int rank( FMatrixRMaj A ) { return rank(A, UtilEjml.F_EPS*100); } /** * Computes the rank of a matrix using the specified tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @param threshold The numerical threshold used to determine a singular value. * @return The matrix's rank. */ public static int rank( FMatrixRMaj A, float threshold ) { SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows, A.numCols, false, false, true); if (svd.inputModified()) A = A.copy(); if (!svd.decompose(A)) throw new RuntimeException("Decomposition failed"); return SingularOps_FDRM.rank(svd, threshold); } /** * Computes the nullity of a matrix using the default tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @return The matrix's nullity. */ public static int nullity( FMatrixRMaj A ) { return nullity(A, UtilEjml.F_EPS*100); } /** * Computes the nullity of a matrix using the specified tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @param threshold The numerical threshold used to determine a singular value. * @return The matrix's nullity. */ public static int nullity( FMatrixRMaj A, float threshold ) { SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows, A.numCols, false, false, true); if (svd.inputModified()) A = A.copy(); if (!svd.decompose(A)) throw new RuntimeException("Decomposition failed"); return SingularOps_FDRM.nullity(svd, threshold); } /** * Counts the number of elements in A which are not zero. * * @param A A matrix * @return number of non-zero elements */ public static int countNonZero( FMatrixRMaj A ) { int total = 0; for (int row = 0, index = 0; row < A.numRows; row++) { for (int col = 0; col < A.numCols; col++, index++) { if (A.data[index] != 0) { total++; } } } return total; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy