All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.mult.MatrixMatrixMult_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.ejml.dense.row.mult;

import org.ejml.UtilEjml;
import org.ejml.data.FMatrix1Row;
import org.ejml.dense.row.CommonOps_FDRM;
import org.jetbrains.annotations.Nullable;

import javax.annotation.Generated;
//CONCURRENT_INLINE import org.ejml.concurrency.EjmlConcurrency;

/**
 * 

* This class contains various types of matrix matrix multiplication operations for {@link FMatrix1Row}. *

*

* Two algorithms that are equivalent can often have very different runtime performance. * This is because of how modern computers uses fast memory caches to speed up reading/writing to data. * Depending on the order in which variables are processed different algorithms can run much faster than others, * even if the number of operations is the same. *

* *

* Algorithms that are labeled as 'reorder' are designed to avoid caching jumping issues, some times at the cost * of increasing the number of operations. This is important for large matrices. The straight forward * implementation seems to be faster for small matrices. *

* *

* Algorithms that are labeled as 'aux' use an auxiliary array of length n. This array is used to create * a copy of an out of sequence column vector that is referenced several times. This reduces the number * of cache misses. If the 'aux' parameter passed in is null then the array is declared internally. *

* *

* Typically the straight forward implementation runs about 30% faster on smaller matrices and * about 5 times slower on larger matrices. This is all computer architecture and matrix shape/size specific. *

* *

DO NOT MODIFY. Automatically generated code created by GenerateMatrixMatrixMult_FDRM

* * @author Peter Abeles */ @Generated("org.ejml.dense.row.mult.GenerateMatrixMatrixMult_FDRM") public class MatrixMatrixMult_FDRM { /** * @see CommonOps_FDRM#mult(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void mult_reorder( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numCols); if (A.numCols == 0 || A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } final int endOfKLoop = B.numRows*B.numCols; //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int indexCbase = i*C.numCols; int indexA = i*A.numCols; // need to assign C.data to a value initially int indexB = 0; int indexC = indexCbase; int end = indexB + B.numCols; float valA = A.data[indexA++]; while (indexB < end) { C.set(indexC++, valA*B.data[indexB++]); } // now add to it while (indexB != endOfKLoop) { // k loop indexC = indexCbase; end = indexB + B.numCols; valA = A.data[indexA++]; while (indexB < end) { // j loop C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#mult(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void mult_small( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numCols); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int cIndex = i*B.numCols; int aIndexStart = i*A.numCols; for (int j = 0; j < B.numCols; j++) { float total = 0; int indexA = aIndexStart; int indexB = j; int end = indexA + B.numRows; while (indexA < end) { total += A.data[indexA++]*B.data[indexB]; indexB += B.numCols; } C.set(cIndex++, total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#mult(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void mult_aux( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numCols); if (aux == null) aux = new float[B.numRows]; for (int j = 0; j < B.numCols; j++) { // create a copy of the column in B to avoid cache issues for (int k = 0; k < B.numRows; k++) { aux[k] = B.unsafe_get(k, j); } int indexA = 0; for (int i = 0; i < A.numRows; i++) { float total = 0; for (int k = 0; k < B.numRows; ) { total += A.data[indexA++]*aux[k++]; } C.set(i*C.numCols + j, total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multTransA(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransA_reorder( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numCols); if (A.numCols == 0 || A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int indexC_start = i*C.numCols; // first assign R float valA = A.data[i]; int indexB = 0; int end = indexB + B.numCols; int indexC = indexC_start; while (indexB < end) { C.set(indexC++, valA*B.data[indexB++]); } // now increment it for (int k = 1; k < A.numRows; k++) { valA = A.unsafe_get(k, i); end = indexB + B.numCols; indexC = indexC_start; // this is the loop for j while (indexB < end) { C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multTransA(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransA_small( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numCols); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numCols; for (int j = 0; j < B.numCols; j++) { int indexA = i; int indexB = j; int end = indexB + B.numRows*B.numCols; float total = 0; // loop for k for (; indexB < end; indexB += B.numCols) { total += A.data[indexA]*B.data[indexB]; indexA += A.numCols; } C.set(cIndex++, total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multTransAB(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransAB( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numRows); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numRows; int indexB = 0; for (int j = 0; j < B.numRows; j++) { int indexA = i; int end = indexB + B.numCols; float total = 0; while (indexB < end) { total += A.data[indexA]*B.data[indexB++]; indexA += A.numCols; } C.set(cIndex++, total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#multTransAB(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransAB_aux( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numRows); if (aux == null) aux = new float[A.numRows]; if (A.numCols == 0 || A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } int indexC = 0; for (int i = 0; i < A.numCols; i++) { for (int k = 0; k < B.numCols; k++) { aux[k] = A.unsafe_get(k, i); } for (int j = 0; j < B.numRows; j++) { float total = 0; for (int k = 0; k < B.numCols; k++) { total += aux[k]*B.unsafe_get(j, k); } C.set(indexC++, total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multTransB(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransB( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numRows); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, xA -> { for (int xA = 0; xA < A.numRows; xA++) { int cIndex = xA*B.numRows; int aIndexStart = xA*B.numCols; int end = aIndexStart + B.numCols; int indexB = 0; for (int xB = 0; xB < B.numRows; xB++) { int indexA = aIndexStart; float total = 0; while (indexA < end) { total += A.data[indexA++]*B.data[indexB++]; } C.set(cIndex++, total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAdd(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAdd_reorder( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); if (A.numCols == 0 || A.numRows == 0) { return; } final int endOfKLoop = B.numRows*B.numCols; //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int indexCbase = i*C.numCols; int indexA = i*A.numCols; // need to assign C.data to a value initially int indexB = 0; int indexC = indexCbase; int end = indexB + B.numCols; float valA = A.data[indexA++]; while (indexB < end) { C.plus(indexC++, valA*B.data[indexB++]); } // now add to it while (indexB != endOfKLoop) { // k loop indexC = indexCbase; end = indexB + B.numCols; valA = A.data[indexA++]; while (indexB < end) { // j loop C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAdd(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAdd_small( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int cIndex = i*B.numCols; int aIndexStart = i*A.numCols; for (int j = 0; j < B.numCols; j++) { float total = 0; int indexA = aIndexStart; int indexB = j; int end = indexA + B.numRows; while (indexA < end) { total += A.data[indexA++]*B.data[indexB]; indexB += B.numCols; } C.plus(cIndex++, total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#multAdd(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAdd_aux( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); if (aux == null) aux = new float[B.numRows]; for (int j = 0; j < B.numCols; j++) { // create a copy of the column in B to avoid cache issues for (int k = 0; k < B.numRows; k++) { aux[k] = B.unsafe_get(k, j); } int indexA = 0; for (int i = 0; i < A.numRows; i++) { float total = 0; for (int k = 0; k < B.numRows; ) { total += A.data[indexA++]*aux[k++]; } C.plus(i*C.numCols + j, total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multAddTransA(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransA_reorder( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); if (A.numCols == 0 || A.numRows == 0) { return; } //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int indexC_start = i*C.numCols; // first assign R float valA = A.data[i]; int indexB = 0; int end = indexB + B.numCols; int indexC = indexC_start; while (indexB < end) { C.plus(indexC++, valA*B.data[indexB++]); } // now increment it for (int k = 1; k < A.numRows; k++) { valA = A.unsafe_get(k, i); end = indexB + B.numCols; indexC = indexC_start; // this is the loop for j while (indexB < end) { C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAddTransA(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransA_small( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numCols; for (int j = 0; j < B.numCols; j++) { int indexA = i; int indexB = j; int end = indexB + B.numRows*B.numCols; float total = 0; // loop for k for (; indexB < end; indexB += B.numCols) { total += A.data[indexA]*B.data[indexB]; indexA += A.numCols; } C.plus(cIndex++, total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAddTransAB(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransAB( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numRows == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numRows; int indexB = 0; for (int j = 0; j < B.numRows; j++) { int indexA = i; int end = indexB + B.numCols; float total = 0; while (indexB < end) { total += A.data[indexA]*B.data[indexB++]; indexA += A.numCols; } C.plus(cIndex++, total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#multAddTransAB(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransAB_aux( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numRows == C.numCols, "C is not compatible with A and B"); if (aux == null) aux = new float[A.numRows]; if (A.numCols == 0 || A.numRows == 0) { return; } int indexC = 0; for (int i = 0; i < A.numCols; i++) { for (int k = 0; k < B.numCols; k++) { aux[k] = A.unsafe_get(k, i); } for (int j = 0; j < B.numRows; j++) { float total = 0; for (int k = 0; k < B.numCols; k++) { total += aux[k]*B.unsafe_get(j, k); } C.plus(indexC++, total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multAddTransB(org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransB( FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numRows == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, xA -> { for (int xA = 0; xA < A.numRows; xA++) { int cIndex = xA*B.numRows; int aIndexStart = xA*B.numCols; int end = aIndexStart + B.numCols; int indexB = 0; for (int xB = 0; xB < B.numRows; xB++) { int indexA = aIndexStart; float total = 0; while (indexA < end) { total += A.data[indexA++]*B.data[indexB++]; } C.plus(cIndex++, total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#mult(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void mult_reorder( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numCols); if (A.numCols == 0 || A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } final int endOfKLoop = B.numRows*B.numCols; //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int indexCbase = i*C.numCols; int indexA = i*A.numCols; // need to assign C.data to a value initially int indexB = 0; int indexC = indexCbase; int end = indexB + B.numCols; float valA = alpha*A.data[indexA++]; while (indexB < end) { C.set(indexC++, valA*B.data[indexB++]); } // now add to it while (indexB != endOfKLoop) { // k loop indexC = indexCbase; end = indexB + B.numCols; valA = alpha*A.data[indexA++]; while (indexB < end) { // j loop C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#mult(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void mult_small( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numCols); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int cIndex = i*B.numCols; int aIndexStart = i*A.numCols; for (int j = 0; j < B.numCols; j++) { float total = 0; int indexA = aIndexStart; int indexB = j; int end = indexA + B.numRows; while (indexA < end) { total += A.data[indexA++]*B.data[indexB]; indexB += B.numCols; } C.set(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#mult(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void mult_aux( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numCols); if (aux == null) aux = new float[B.numRows]; for (int j = 0; j < B.numCols; j++) { // create a copy of the column in B to avoid cache issues for (int k = 0; k < B.numRows; k++) { aux[k] = B.unsafe_get(k, j); } int indexA = 0; for (int i = 0; i < A.numRows; i++) { float total = 0; for (int k = 0; k < B.numRows; ) { total += A.data[indexA++]*aux[k++]; } C.set(i*C.numCols + j, alpha*total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multTransA(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransA_reorder( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numCols); if (A.numCols == 0 || A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int indexC_start = i*C.numCols; // first assign R float valA = alpha*A.data[i]; int indexB = 0; int end = indexB + B.numCols; int indexC = indexC_start; while (indexB < end) { C.set(indexC++, valA*B.data[indexB++]); } // now increment it for (int k = 1; k < A.numRows; k++) { valA = alpha*A.unsafe_get(k, i); end = indexB + B.numCols; indexC = indexC_start; // this is the loop for j while (indexB < end) { C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multTransA(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransA_small( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numCols); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numCols; for (int j = 0; j < B.numCols; j++) { int indexA = i; int indexB = j; int end = indexB + B.numRows*B.numCols; float total = 0; // loop for k for (; indexB < end; indexB += B.numCols) { total += A.data[indexA]*B.data[indexB]; indexA += A.numCols; } C.set(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multTransAB(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransAB( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numRows); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numRows; int indexB = 0; for (int j = 0; j < B.numRows; j++) { int indexA = i; int end = indexB + B.numCols; float total = 0; while (indexB < end) { total += A.data[indexA]*B.data[indexB++]; indexA += A.numCols; } C.set(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#multTransAB(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransAB_aux( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numCols, B.numRows); if (aux == null) aux = new float[A.numRows]; if (A.numCols == 0 || A.numRows == 0) { CommonOps_FDRM.fill(C, 0); return; } int indexC = 0; for (int i = 0; i < A.numCols; i++) { for (int k = 0; k < B.numCols; k++) { aux[k] = A.unsafe_get(k, i); } for (int j = 0; j < B.numRows; j++) { float total = 0; for (int k = 0; k < B.numCols; k++) { total += aux[k]*B.unsafe_get(j, k); } C.set(indexC++, alpha*total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multTransB(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multTransB( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); C.reshape(A.numRows, B.numRows); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, xA -> { for (int xA = 0; xA < A.numRows; xA++) { int cIndex = xA*B.numRows; int aIndexStart = xA*B.numCols; int end = aIndexStart + B.numCols; int indexB = 0; for (int xB = 0; xB < B.numRows; xB++) { int indexA = aIndexStart; float total = 0; while (indexA < end) { total += A.data[indexA++]*B.data[indexB++]; } C.set(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAdd(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAdd_reorder( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); if (A.numCols == 0 || A.numRows == 0) { return; } final int endOfKLoop = B.numRows*B.numCols; //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int indexCbase = i*C.numCols; int indexA = i*A.numCols; // need to assign C.data to a value initially int indexB = 0; int indexC = indexCbase; int end = indexB + B.numCols; float valA = alpha*A.data[indexA++]; while (indexB < end) { C.plus(indexC++, valA*B.data[indexB++]); } // now add to it while (indexB != endOfKLoop) { // k loop indexC = indexCbase; end = indexB + B.numCols; valA = alpha*A.data[indexA++]; while (indexB < end) { // j loop C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAdd(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAdd_small( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, i -> { for (int i = 0; i < A.numRows; i++) { int cIndex = i*B.numCols; int aIndexStart = i*A.numCols; for (int j = 0; j < B.numCols; j++) { float total = 0; int indexA = aIndexStart; int indexB = j; int end = indexA + B.numRows; while (indexA < end) { total += A.data[indexA++]*B.data[indexB]; indexB += B.numCols; } C.plus(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#multAdd(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAdd_aux( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); if (aux == null) aux = new float[B.numRows]; for (int j = 0; j < B.numCols; j++) { // create a copy of the column in B to avoid cache issues for (int k = 0; k < B.numRows; k++) { aux[k] = B.unsafe_get(k, j); } int indexA = 0; for (int i = 0; i < A.numRows; i++) { float total = 0; for (int k = 0; k < B.numRows; ) { total += A.data[indexA++]*aux[k++]; } C.plus(i*C.numCols + j, alpha*total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multAddTransA(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransA_reorder( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); if (A.numCols == 0 || A.numRows == 0) { return; } //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int indexC_start = i*C.numCols; // first assign R float valA = alpha*A.data[i]; int indexB = 0; int end = indexB + B.numCols; int indexC = indexC_start; while (indexB < end) { C.plus(indexC++, valA*B.data[indexB++]); } // now increment it for (int k = 1; k < A.numRows; k++) { valA = alpha*A.unsafe_get(k, i); end = indexB + B.numCols; indexC = indexC_start; // this is the loop for j while (indexB < end) { C.data[indexC++] += valA*B.data[indexB++]; } } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAddTransA(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransA_small( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numRows, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numCols == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numCols; for (int j = 0; j < B.numCols; j++) { int indexA = i; int indexB = j; int end = indexB + B.numRows*B.numCols; float total = 0; // loop for k for (; indexB < end; indexB += B.numCols) { total += A.data[indexA]*B.data[indexB]; indexA += A.numCols; } C.plus(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } /** * @see CommonOps_FDRM#multAddTransAB(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransAB( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numRows == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numCols, i -> { for (int i = 0; i < A.numCols; i++) { int cIndex = i*B.numRows; int indexB = 0; for (int j = 0; j < B.numRows; j++) { int indexA = i; int end = indexB + B.numCols; float total = 0; while (indexB < end) { total += A.data[indexA]*B.data[indexB++]; indexA += A.numCols; } C.plus(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } //CONCURRENT_OMIT_BEGIN /** * @see CommonOps_FDRM#multAddTransAB(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransAB_aux( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C, @Nullable float[] aux ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numRows, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numCols == C.numRows && B.numRows == C.numCols, "C is not compatible with A and B"); if (aux == null) aux = new float[A.numRows]; if (A.numCols == 0 || A.numRows == 0) { return; } int indexC = 0; for (int i = 0; i < A.numCols; i++) { for (int k = 0; k < B.numCols; k++) { aux[k] = A.unsafe_get(k, i); } for (int j = 0; j < B.numRows; j++) { float total = 0; for (int k = 0; k < B.numCols; k++) { total += aux[k]*B.unsafe_get(j, k); } C.plus(indexC++, alpha*total); } } } //CONCURRENT_OMIT_END /** * @see CommonOps_FDRM#multAddTransB(float, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row, org.ejml.data.FMatrix1Row) */ public static void multAddTransB( float alpha, FMatrix1Row A, FMatrix1Row B, FMatrix1Row C ) { UtilEjml.assertTrue(A != C && B != C, "Neither 'A' or 'B' can be the same matrix as 'C'"); UtilEjml.assertShape(A.numCols, B.numCols, "The 'A' and 'B' matrices do not have compatible dimensions"); UtilEjml.assertShape(A.numRows == C.numRows && B.numRows == C.numCols, "C is not compatible with A and B"); //CONCURRENT_BELOW EjmlConcurrency.loopFor(0, A.numRows, xA -> { for (int xA = 0; xA < A.numRows; xA++) { int cIndex = xA*B.numRows; int aIndexStart = xA*B.numCols; int end = aIndexStart + B.numCols; int indexB = 0; for (int xB = 0; xB < B.numRows; xB++) { int indexA = aIndexStart; float total = 0; while (indexA < end) { total += A.data[indexA++]*B.data[indexB++]; } C.plus(cIndex++, alpha*total); } } //CONCURRENT_ABOVE }); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy