All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.simple.SimpleEVD Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.simple;

import org.ejml.data.*;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_FDRM;
import org.ejml.interfaces.decomposition.EigenDecomposition;
import org.ejml.interfaces.decomposition.EigenDecomposition_F32;
import org.ejml.interfaces.decomposition.EigenDecomposition_F64;

import java.util.ArrayList;
import java.util.List;


/**
 * Wrapper around EigenDecomposition for SimpleMatrix
 *
 * @author Peter Abeles
 */
@SuppressWarnings({"unchecked"})
public class SimpleEVD 
{
    private EigenDecomposition eig;

    Matrix mat;
    boolean is64;

    public SimpleEVD( Matrix mat )
    {
        this.mat = mat;
        this.is64 = mat instanceof DMatrixRMaj;

        if( is64) {
            eig = DecompositionFactory_DDRM.eig(mat.getNumCols(), true);
        } else {
            eig = DecompositionFactory_FDRM.eig(mat.getNumCols(), true);

        }
        if( !eig.decompose(mat))
            throw new RuntimeException("Eigenvalue Decomposition failed");
    }

    /**
     * Returns a list of all the eigenvalues
     */
    public List getEigenvalues() {
        List ret = new ArrayList();

        if( is64 ) {
            EigenDecomposition_F64 d = (EigenDecomposition_F64)eig;
            for (int i = 0; i < eig.getNumberOfEigenvalues(); i++) {
                ret.add(d.getEigenvalue(i));
            }
        } else {
            EigenDecomposition_F32 d = (EigenDecomposition_F32)eig;
            for (int i = 0; i < eig.getNumberOfEigenvalues(); i++) {
                Complex_F32 c = d.getEigenvalue(i);
                ret.add(new Complex_F64(c.real, c.imaginary));
            }
        }

        return ret;
    }

    /**
     * Returns the number of eigenvalues/eigenvectors.  This is the matrix's dimension.
     *
     * @return number of eigenvalues/eigenvectors.
     */
    public int getNumberOfEigenvalues() {
        return eig.getNumberOfEigenvalues();
    }

    /**
     * 

* Returns an eigenvalue as a complex number. For symmetric matrices the returned eigenvalue will always be a real * number, which means the imaginary component will be equal to zero. *

* *

* NOTE: The order of the eigenvalues is dependent upon the decomposition algorithm used. This means that they may * or may not be ordered by magnitude. For example the QR algorithm will returns results that are partially * ordered by magnitude, but this behavior should not be relied upon. *

* * @param index Index of the eigenvalue eigenvector pair. * @return An eigenvalue. */ public Complex_F64 getEigenvalue(int index ) { if( is64 ) return ((EigenDecomposition_F64)eig).getEigenvalue(index); else { Complex_F64 c = ((EigenDecomposition_F64)eig).getEigenvalue(index); return new Complex_F64(c.real, c.imaginary); } } /** *

* Used to retrieve real valued eigenvectors. If an eigenvector is associated with a complex eigenvalue * then null is returned instead. *

* * @param index Index of the eigenvalue eigenvector pair. * @return If the associated eigenvalue is real then an eigenvector is returned, null otherwise. */ public T getEigenVector( int index ) { Matrix v = eig.getEigenVector(index); if( v == null ) return null; return (T)SimpleMatrix.wrap(v); } /** *

* Computes the quality of the computed decomposition. A value close to or less than 1e-15 * is considered to be within machine precision. *

* *

* This function must be called before the original matrix has been modified or else it will * produce meaningless results. *

* * @return Quality of the decomposition. */ public /**/double quality() { if (is64) { return DecompositionFactory_DDRM.quality((DMatrixRMaj)mat, (EigenDecomposition_F64)eig); } else { return DecompositionFactory_FDRM.quality((FMatrixRMaj)mat, (EigenDecomposition_F32)eig); } } /** * Returns the underlying decomposition that this is a wrapper around. * * @return EigenDecomposition */ public EigenDecomposition getEVD() { return eig; } /** * Returns the index of the eigenvalue which has the largest magnitude. * * @return index of the largest magnitude eigen value. */ public int getIndexMax() { int indexMax = 0; double max = getEigenvalue(0).getMagnitude2(); final int N = getNumberOfEigenvalues(); for( int i = 1; i < N; i++ ) { double m = getEigenvalue(i).getMagnitude2(); if( m > max ) { max = m; indexMax = i; } } return indexMax; } /** * Returns the index of the eigenvalue which has the smallest magnitude. * * @return index of the smallest magnitude eigen value. */ public int getIndexMin() { int indexMin = 0; double min = getEigenvalue(0).getMagnitude2(); final int N = getNumberOfEigenvalues(); for( int i = 1; i < N; i++ ) { double m = getEigenvalue(i).getMagnitude2(); if( m < min ) { min = m; indexMin = i; } } return indexMin; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy