All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.simple.SimpleSVD Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.simple;

import org.ejml.UtilEjml;
import org.ejml.data.DMatrixRMaj;
import org.ejml.data.FMatrixRMaj;
import org.ejml.data.Matrix;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.SingularOps_FDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_FDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F32;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;


/**
 * 

* Wrapper around SVD for simple matrix. See {@link SingularValueDecomposition} for more details. *

* SVD is defined as the following decomposition:
*
A = U * W * V T
* where A is m by n, and U and V are orthogonal matrices, and W is a diagonal matrix * *

* Tolerance for singular values is * Math.max(mat.numRows,mat.numCols) * W.get(0,0) * UtilEjml.EPS; * where W.get(0,0) is the largest singular value. *

* * @author Peter Abeles */ @SuppressWarnings({"unchecked"}) public class SimpleSVD { private SingularValueDecomposition svd; private T U; private T W; private T V; private Matrix mat; final boolean is64; // tolerance for singular values double tol; public SimpleSVD( Matrix mat , boolean compact ) { this.mat = mat; this.is64 = mat instanceof DMatrixRMaj; if( is64 ) { DMatrixRMaj m = (DMatrixRMaj)mat; svd = DecompositionFactory_DDRM.svd(m.numRows,m.numCols,true,true,compact); } else { FMatrixRMaj m = (FMatrixRMaj)mat; svd = DecompositionFactory_FDRM.svd(m.numRows,m.numCols,true,true,compact); } if( !svd.decompose(mat) ) throw new RuntimeException("Decomposition failed"); U = (T)SimpleMatrix.wrap(svd.getU(null,false)); W = (T)SimpleMatrix.wrap(svd.getW(null)); V = (T)SimpleMatrix.wrap(svd.getV(null,false)); // order singular values from largest to smallest if( is64 ) { SingularOps_DDRM.descendingOrder( (DMatrixRMaj)U.getMatrix(), false, (DMatrixRMaj)W.getMatrix(), (DMatrixRMaj)V.getMatrix(), false); tol = SingularOps_DDRM.singularThreshold((SingularValueDecomposition_F64)svd); } else { SingularOps_FDRM.descendingOrder( (FMatrixRMaj)U.getMatrix(), false, (FMatrixRMaj)W.getMatrix(), (FMatrixRMaj)V.getMatrix(), false); tol = SingularOps_FDRM.singularThreshold((SingularValueDecomposition_F32)svd); } } /** *

* Returns the orthogonal 'U' matrix. *

* * @return An orthogonal m by m matrix. */ public T getU() { return U; } /** * Returns a diagonal matrix with the singular values. The singular values are ordered * from largest to smallest. * * @return Diagonal matrix with singular values along the diagonal. */ public T getW() { return W; } /** *

* Returns the orthogonal 'V' matrix. *

* * @return An orthogonal n by n matrix. */ public T getV() { return V; } /** *

* Computes the quality of the computed decomposition. A value close to or less than 1e-15 * is considered to be within machine precision. *

* *

* This function must be called before the original matrix has been modified or else it will * produce meaningless results. *

* * @return Quality of the decomposition. */ public /**/double quality() { if( is64 ) { return DecompositionFactory_DDRM.quality((DMatrixRMaj)mat, (DMatrixRMaj)U.getMatrix(), (DMatrixRMaj)W.getMatrix(), (DMatrixRMaj)V.transpose().getMatrix()); } else { return DecompositionFactory_FDRM.quality((FMatrixRMaj)mat, (FMatrixRMaj)U.getMatrix(), (FMatrixRMaj)W.getMatrix(), (FMatrixRMaj)V.transpose().getMatrix()); } } /** * Computes the null space from an SVD. For more information see {@link SingularOps_DDRM#nullSpace}. * @return Null space vector. */ public SimpleMatrix nullSpace() { // TODO take advantage of the singular values being ordered already if( is64 ) { return SimpleMatrix.wrap(SingularOps_DDRM.nullSpace((SingularValueDecomposition_F64)svd, null, tol)); } else { return SimpleMatrix.wrap(SingularOps_FDRM.nullSpace((SingularValueDecomposition_F32)svd, null, (float)tol)); } } /** * Returns the specified singular value. * * @param index Which singular value is to be returned. * @return A singular value. */ public double getSingleValue( int index ) { return W.get(index,index); } /** * Returns an array of all the singular values */ public double[] getSingularValues() { double ret[] = new double[W.numCols()]; for (int i = 0; i < ret.length; i++) { ret[i] = getSingleValue(i); } return ret; } /** * Returns the rank of the decomposed matrix. * * @see SingularOps_DDRM#rank(SingularValueDecomposition_F64, double) * * @return The matrix's rank */ public int rank() { if( is64 ) { return SingularOps_DDRM.rank((SingularValueDecomposition_F64)svd, tol); } else { return SingularOps_FDRM.rank((SingularValueDecomposition_F32)svd, (float)tol); } } /** * The nullity of the decomposed matrix. * * @see SingularOps_DDRM#nullity(SingularValueDecomposition_F64, double) * * @return The matrix's nullity */ public int nullity() { if( is64 ) { return SingularOps_DDRM.nullity((SingularValueDecomposition_F64)svd, 10.0 * UtilEjml.EPS); } else { return SingularOps_FDRM.nullity((SingularValueDecomposition_F32)svd, 5.0f * UtilEjml.F_EPS); } } /** * Returns the underlying decomposition that this is a wrapper around. * * @return SingularValueDecomposition */ public SingularValueDecomposition getSVD() { return svd; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy