All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.simple.SimpleBase Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.simple;

import org.ejml.UtilEjml;
import org.ejml.data.*;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.NormOps_DDRM;
import org.ejml.equation.Equation;
import org.ejml.ops.MatrixIO;
import org.ejml.simple.ops.*;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.io.Serializable;

import static org.ejml.ops.MatrixIO.DEFAULT_FLOAT_FORMAT;


/**
 * Parent of {@link SimpleMatrix} implements all the standard matrix operations and uses
 * generics to allow the returned matrix type to be changed.  This class should be extended
 * instead of SimpleMatrix.
 *
 * @author Peter Abeles
 */
@SuppressWarnings({"unchecked"})
public abstract class SimpleBase > implements Serializable {

    static final long serialVersionUID = 2342556642L;

    /**
     * Internal matrix which this is a wrapper around.
     */
    protected Matrix mat;
    protected SimpleOperations ops;

    protected transient AutomaticSimpleMatrixConvert convertType = new AutomaticSimpleMatrixConvert();

    public SimpleBase( int numRows , int numCols ) {
        setMatrix(new DMatrixRMaj(numRows, numCols));
    }

    protected SimpleBase() {
    }

    /**
     * Used internally for creating new instances of SimpleMatrix.  If SimpleMatrix is extended
     * by another class this function should be overridden so that the returned matrices are
     * of the correct type.
     *
     * @param numRows number of rows in the new matrix.
     * @param numCols number of columns in the new matrix.
     * @param type Type of matrix it should create
     * @return A new matrix.
     */
    protected abstract T createMatrix(int numRows, int numCols, MatrixType type);

    protected abstract T wrapMatrix( Matrix m );

    /**
     * 

* Returns a reference to the matrix that it uses internally. This is useful * when an operation is needed that is not provided by this class. *

* * @return Reference to the internal DMatrixRMaj. */ public T getMatrix() { return (T)mat; } public DMatrixRMaj getDDRM() { return (DMatrixRMaj)mat; } public FMatrixRMaj getFDRM() { return (FMatrixRMaj)mat; } public ZMatrixRMaj getZDRM() { return (ZMatrixRMaj)mat; } public CMatrixRMaj getCDRM() { return (CMatrixRMaj)mat; } public DMatrixSparseCSC getDSCC() { return (DMatrixSparseCSC)mat; } public FMatrixSparseCSC getFSCC() { return (FMatrixSparseCSC)mat; } protected static SimpleOperations lookupOps( MatrixType type ) { switch( type ) { case DDRM: return new SimpleOperations_DDRM(); case FDRM: return new SimpleOperations_FDRM(); case ZDRM: return new SimpleOperations_ZDRM(); case CDRM: return new SimpleOperations_CDRM(); case DSCC: return new SimpleOperations_SPARSE(); } throw new RuntimeException("Unknown Matrix Type. "+type); } /** *

* Returns the transpose of this matrix.
* aT *

* * @see CommonOps_DDRM#transpose(DMatrixRMaj, DMatrixRMaj) * * @return A matrix that is n by m. */ public T transpose() { T ret = createMatrix(mat.getNumCols(),mat.getNumRows(), mat.getType()); ops.transpose(mat,ret.mat); return ret; } /** *

* Returns a matrix which is the result of matrix multiplication:
*
* c = a * b
*
* where c is the returned matrix, a is this matrix, and b is the passed in matrix. *

* * @see CommonOps_DDRM#mult(DMatrix1Row, DMatrix1Row, DMatrix1Row) * * @param B A matrix that is n by bn. Not modified. * * @return The results of this operation. */ public T mult( T B ) { convertType.specify(this,B); T A = convertType.convert(this); B = convertType.convert(B); T ret = A.createMatrix(mat.getNumRows(),B.getMatrix().getNumCols(), A.getType()); A.ops.mult(A.mat,B.mat,ret.mat); return ret; } /** *

* Computes the Kronecker product between this matrix and the provided B matrix:
*
* C = kron(A,B) *

* @see CommonOps_DDRM#kron(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) * * @param B The right matrix in the operation. Not modified. * @return Kronecker product between this matrix and B. */ public T kron( T B ) { convertType.specify(this,B); T A = convertType.convert(this); B = convertType.convert(B); T ret = A.createMatrix(mat.getNumRows()*B.numRows(),mat.getNumCols()*B.numCols(), A.getType()); A.ops.kron(A.mat,B.mat,ret.mat); return ret; } /** *

* Returns the result of matrix addition:
*
* c = a + b
*
* where c is the returned matrix, a is this matrix, and b is the passed in matrix. *

* * @see CommonOps_DDRM#mult(DMatrix1Row, DMatrix1Row, DMatrix1Row) * * @param B m by n matrix. Not modified. * * @return The results of this operation. */ public T plus( T B ) { convertType.specify(this,B); T A = convertType.convert(this); B = convertType.convert(B); T ret = A.createMatrix(mat.getNumRows(),mat.getNumCols(), A.getType()); A.ops.plus(A.mat,B.mat,ret.mat); return ret; } /** *

* Returns the result of matrix subtraction:
*
* c = a - b
*
* where c is the returned matrix, a is this matrix, and b is the passed in matrix. *

* * @see CommonOps_DDRM#subtract(DMatrixD1, DMatrixD1, DMatrixD1) * * @param B m by n matrix. Not modified. * * @return The results of this operation. */ public T minus( T B ) { convertType.specify(this,B); T A = convertType.convert(this); B = convertType.convert(B); T ret = A.createLike(); A.ops.minus(A.mat,B.mat,ret.mat); return ret; } /** *

* Returns the result of matrix-double subtraction:
*
* c = a - b
*
* where c is the returned matrix, a is this matrix, and b is the passed in double. *

* * @see CommonOps_DDRM#subtract(DMatrixD1, double , DMatrixD1) * * @param b Value subtracted from each element * * @return The results of this operation. */ public T minus( double b ) { T ret = createLike(); ops.minus(mat,b,ret.mat); return ret; } /** *

* Returns the result of scalar addition:
*
* c = a + b
*
* where c is the returned matrix, a is this matrix, and b is the passed in double. *

* * @see CommonOps_DDRM#add( DMatrixD1, double , DMatrixD1) * * @param b Value added to each element * * @return A matrix that contains the results. */ public T plus( double b ) { T ret = createLike(); ops.plus(mat,b,ret.mat); return ret; } /** *

* Performs a matrix addition and scale operation.
*
* c = a + β*b
*
* where c is the returned matrix, a is this matrix, and b is the passed in matrix. *

* * @see CommonOps_DDRM#add( DMatrixD1, double , DMatrixD1, DMatrixD1) * * @param B m by n matrix. Not modified. * * @return A matrix that contains the results. */ public T plus( double beta , T B ) { convertType.specify(this,B); T A = convertType.convert(this); B = convertType.convert(B); T ret = A.createLike(); A.ops.plus(A.mat,beta,B.mat,ret.mat); return ret; } /** * Computes the dot product (a.k.a. inner product) between this vector and vector 'v'. * * @param v The second vector in the dot product. Not modified. * @return dot product */ public double dot( T v ) { convertType.specify(this,v); T A = convertType.convert(this); v = convertType.convert(v); if( !isVector() ) { throw new IllegalArgumentException("'this' matrix is not a vector."); } else if( !v.isVector() ) { throw new IllegalArgumentException("'v' matrix is not a vector."); } return A.ops.dot(A.mat,v.getMatrix()); } /** * Returns true if this matrix is a vector. A vector is defined as a matrix * that has either one row or column. * * @return Returns true for vectors and false otherwise. */ public boolean isVector() { return mat.getNumRows() == 1 || mat.getNumCols() == 1; } /** *

* Returns the result of scaling each element by 'val':
* bi,j = val*ai,j *

* * @see CommonOps_DDRM#scale(double, DMatrixD1) * * @param val The multiplication factor. * @return The scaled matrix. */ public T scale( double val ) { T ret = createLike(); ops.scale(mat,val,ret.getMatrix()); return ret; } /** *

* Returns the result of dividing each element by 'val': * bi,j = ai,j/val *

* * @see CommonOps_DDRM#divide(DMatrixD1,double) * * @param val Divisor. * @return Matrix with its elements divided by the specified value. */ public T divide( double val ) { T ret = createLike(); ops.divide(mat,val,ret.getMatrix()); return ret; } /** *

* Returns the inverse of this matrix.
*
* b = a-1
*

* *

* If the matrix could not be inverted then SingularMatrixException is thrown. Even * if no exception is thrown the matrix could still be singular or nearly singular. *

* * @see CommonOps_DDRM#invert(DMatrixRMaj, DMatrixRMaj) * * @throws SingularMatrixException * * @return The inverse of this matrix. */ public T invert() { T ret = createLike(); if( !ops.invert(mat,ret.mat)) throw new SingularMatrixException(); if( ops.hasUncountable(ret.mat)) throw new SingularMatrixException("Solution contains uncountable numbers"); return ret; } /** *

* Computes the Moore-Penrose pseudo-inverse *

* * @return inverse computed using the pseudo inverse. */ public T pseudoInverse() { T ret = createLike(); ops.pseudoInverse(mat,ret.mat); return ret; } /** *

* Solves for X in the following equation:
*
* x = a-1b
*
* where 'a' is this matrix and 'b' is an n by p matrix. *

* *

* If the system could not be solved then SingularMatrixException is thrown. Even * if no exception is thrown 'a' could still be singular or nearly singular. *

* * @see CommonOps_DDRM#solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) * * @throws SingularMatrixException * * @param b n by p matrix. Not modified. * @return The solution for 'x' that is n by p. */ public T solve( T b ) { convertType.specify(this,b); T A = convertType.convert(this); b = convertType.convert(b); T x = A.createMatrix(mat.getNumCols(),b.getMatrix().getNumCols(), A.getType()); if( !A.ops.solve(A.mat,x.mat,b.mat)) throw new SingularMatrixException(); if( A.ops.hasUncountable(x.mat)) throw new SingularMatrixException("Solution contains uncountable numbers"); return x; } /** * Sets the elements in this matrix to be equal to the elements in the passed in matrix. * Both matrix must have the same dimension. * * @param a The matrix whose value this matrix is being set to. */ public void set( T a ) { if( a.getType() == getType() ) mat.set(a.getMatrix()); else { setMatrix(a.mat.copy()); } } /** *

* Sets all the elements in this matrix equal to the specified value.
*
* aij = val
*

* * @see CommonOps_DDRM#fill(DMatrixD1, double) * * @param val The value each element is set to. */ public void fill(double val ) { ops.fill(mat,val); } /** * Sets all the elements in the matrix equal to zero. * * @see CommonOps_DDRM#fill(DMatrixD1, double) */ public void zero() { fill(0); } /** *

* Computes the Frobenius normal of the matrix:
*
* normF = Sqrt{ ∑i=1:mj=1:n { aij2} } *

* * @see NormOps_DDRM#normF(DMatrixD1) * * @return The matrix's Frobenius normal. */ public double normF() { return ops.normF(mat); } /** *

* The condition p = 2 number of a matrix is used to measure the sensitivity of the linear * system Ax=b. A value near one indicates that it is a well conditioned matrix. *

* * @see NormOps_DDRM#conditionP2(DMatrixRMaj) * * @return The condition number. */ public double conditionP2() { return ops.conditionP2(mat); } /** * Computes the determinant of the matrix. * * @see CommonOps_DDRM#det(DMatrixRMaj) * * @return The determinant. */ public double determinant() { double ret = ops.determinant(mat); if (UtilEjml.isUncountable(ret)) return 0; return ret; } /** *

* Computes the trace of the matrix. *

* * @see CommonOps_DDRM#trace(DMatrix1Row) * * @return The trace of the matrix. */ public double trace() { return ops.trace(mat); } /** *

* Reshapes the matrix to the specified number of rows and columns. If the total number of elements * is ≤ number of elements it had before the data is saved. Otherwise a new internal array is * declared and the old data lost. *

* *

* This is equivalent to calling A.getMatrix().reshape(numRows,numCols,false). *

* * @see DMatrixRMaj#reshape(int,int,boolean) * * @param numRows The new number of rows in the matrix. * @param numCols The new number of columns in the matrix. */ public void reshape( int numRows , int numCols ) { if( mat.getType().isFixed() ) { throw new IllegalArgumentException("Can't reshape a fixed sized matrix"); } else { ((ReshapeMatrix)mat).reshape(numRows, numCols); } } /** * Assigns the element in the Matrix to the specified value. Performs a bounds check to make sure * the requested element is part of the matrix. * * @param row The row of the element. * @param col The column of the element. * @param value The element's new value. */ public void set( int row , int col , double value ) { ops.set(mat, row, col, value); } /** * Assigns an element a value based on its index in the internal array.. * * @param index The matrix element that is being assigned a value. * @param value The element's new value. */ public void set( int index , double value ) { if( mat.getType() == MatrixType.DDRM ) { ((DMatrixRMaj) mat).set(index, value); } else if( mat.getType() == MatrixType.FDRM ) { ((FMatrixRMaj) mat).set(index, (float)value); } else { throw new RuntimeException("Not supported yet for this matrix type"); } } /** * Used to set the complex value of a matrix element. * @param row The row of the element. * @param col The column of the element. * @param real Real component of assigned value * @param imaginary Imaginary component of assigned value */ public void set( int row , int col , double real , double imaginary ) { if( imaginary == 0 ) { set(row,col,real); } else { ops.set(mat,row,col, real, imaginary); } } /** *

* Assigns consecutive elements inside a row to the provided array.
*
* A(row,offset:(offset + values.length)) = values *

* * @param row The row that the array is to be written to. * @param startColumn The initial column that the array is written to. * @param values Values which are to be written to the row in a matrix. */ public void setRow( int row , int startColumn , double ...values ) { ops.setRow(mat,row,startColumn,values); } /** *

* Assigns consecutive elements inside a column to the provided array.
*
* A(offset:(offset + values.length),column) = values *

* * @param column The column that the array is to be written to. * @param startRow The initial column that the array is written to. * @param values Values which are to be written to the row in a matrix. */ public void setColumn( int column , int startRow , double ...values ) { ops.setColumn(mat,column,startRow,values); } /** * Returns the value of the specified matrix element. Performs a bounds check to make sure * the requested element is part of the matrix. * * NOTE: Complex matrices will throw an exception * * @param row The row of the element. * @param col The column of the element. * @return The value of the element. */ public double get( int row , int col ) { return ops.get(mat,row,col); } /** * Returns the value of the matrix at the specified index of the 1D row major array. * * @see DMatrixRMaj#get(int) * * @param index The element's index whose value is to be returned * @return The value of the specified element. */ public double get( int index ) { MatrixType type = mat.getType(); if( type.isReal()) { if (type.getBits() == 64) { return ((DMatrixRMaj) mat).data[index]; } else { return ((FMatrixRMaj) mat).data[index]; } } else { throw new IllegalArgumentException("Complex matrix. Call get(int,Complex64F) instead"); } } /** * Used to get the complex value of a matrix element. * @param row The row of the element. * @param col The column of the element. * @param output Storage for the value */ public void get( int row , int col , Complex_F64 output ) { ops.get(mat,row,col,output); } /** * Returns the index in the matrix's array. * * @see DMatrixRMaj#getIndex(int, int) * * @param row The row number. * @param col The column number. * @return The index of the specified element. */ public int getIndex( int row , int col ) { return row * mat.getNumCols() + col; } /** * Creates a new iterator for traversing through a submatrix inside this matrix. It can be traversed * by row or by column. Range of elements is inclusive, e.g. minRow = 0 and maxRow = 1 will include rows * 0 and 1. The iteration starts at (minRow,minCol) and ends at (maxRow,maxCol) * * @param rowMajor true means it will traverse through the submatrix by row first, false by columns. * @param minRow first row it will start at. * @param minCol first column it will start at. * @param maxRow last row it will stop at. * @param maxCol last column it will stop at. * @return A new MatrixIterator */ public DMatrixIterator iterator(boolean rowMajor, int minRow, int minCol, int maxRow, int maxCol) { return new DMatrixIterator((DMatrixRMaj)mat,rowMajor, minRow, minCol, maxRow, maxCol); } /** * Creates and returns a matrix which is idential to this one. * * @return A new identical matrix. */ public T copy() { T ret = createLike(); ret.getMatrix().set(this.getMatrix()); return ret; } /** * Returns the number of rows in this matrix. * * @return number of rows. */ public int numRows() { return mat.getNumRows(); } /** * Returns the number of columns in this matrix. * * @return number of columns. */ public int numCols() { return mat.getNumCols(); } /** * Returns the number of elements in this matrix, which is equal to * the number of rows times the number of columns. * * @return The number of elements in the matrix. */ public int getNumElements() { return mat.getNumCols()*mat.getNumRows(); } /** * Prints the matrix to standard out. */ public void print() { ops.print(System.out,mat,DEFAULT_FLOAT_FORMAT); } /** *

* Prints the matrix to standard out given a {@link java.io.PrintStream#printf} style floating point format, * e.g. print("%f"). *

*/ public void print( String format ) { ops.print(System.out,mat,format); } /** *

* Converts the array into a string format for display purposes. * The conversion is done using {@link MatrixIO#print(java.io.PrintStream, DMatrix)}. *

* * @return String representation of the matrix. */ public String toString() { ByteArrayOutputStream stream = new ByteArrayOutputStream(); PrintStream p = new PrintStream(stream); MatrixIO.print(p,mat); return stream.toString(); } /** *

* Creates a new SimpleMatrix which is a submatrix of this matrix. *

*

* si-y0 , j-x0 = oij for all y0 ≤ i < y1 and x0 ≤ j < x1
*
* where 'sij' is an element in the submatrix and 'oij' is an element in the * original matrix. *

* *

* If any of the inputs are set to SimpleMatrix.END then it will be set to the last row * or column in the matrix. *

* * @param y0 Start row. * @param y1 Stop row + 1. * @param x0 Start column. * @param x1 Stop column + 1. * @return The submatrix. */ public T extractMatrix(int y0 , int y1, int x0 , int x1 ) { if( y0 == SimpleMatrix.END ) y0 = mat.getNumRows(); if( y1 == SimpleMatrix.END ) y1 = mat.getNumRows(); if( x0 == SimpleMatrix.END ) x0 = mat.getNumCols(); if( x1 == SimpleMatrix.END ) x1 = mat.getNumCols(); T ret = createMatrix(y1-y0,x1-x0, mat.getType()); ops.extract(mat, y0, y1, x0, x1, ret.mat, 0, 0); return ret; } /** *

* Extracts a row or column from this matrix. The returned vector will either be a row * or column vector depending on the input type. *

* * @param extractRow If true a row will be extracted. * @param element The row or column the vector is contained in. * @return Extracted vector. */ public T extractVector( boolean extractRow , int element ) { if( extractRow ) { return extractMatrix(element,element+1,0,SimpleMatrix.END); } else { return extractMatrix(0,SimpleMatrix.END,element,element+1); } } /** *

* If a vector then a square matrix is returned if a matrix then a vector of diagonal ements is returned *

* * @see CommonOps_DDRM#extractDiag(DMatrixRMaj, DMatrixRMaj) * @return Diagonal elements inside a vector or a square matrix with the same diagonal elements. */ public T diag() { return wrapMatrix(ops.diag(mat)); } /** * Checks to see if matrix 'a' is the same as this matrix within the specified * tolerance. * * @param a The matrix it is being compared against. * @param tol How similar they must be to be equals. * @return If they are equal within tolerance of each other. */ public boolean isIdentical(T a, double tol) { if( a.getType() != getType() ) return false; return ops.isIdentical(mat,a.mat,tol); } /** * Checks to see if any of the elements in this matrix are either NaN or infinite. * * @return True of an element is NaN or infinite. False otherwise. */ public boolean hasUncountable() { return ops.hasUncountable(mat); } /** * Computes a full Singular Value Decomposition (SVD) of this matrix with the * eigenvalues ordered from largest to smallest. * * @return SVD */ public SimpleSVD svd() { return new SimpleSVD(mat,false); } /** * Computes the SVD in either compact format or full format. * * @return SVD of this matrix. */ public SimpleSVD svd( boolean compact ) { return new SimpleSVD(mat,compact); } /** * Returns the Eigen Value Decomposition (EVD) of this matrix. */ public SimpleEVD eig() { return new SimpleEVD(mat); } /** * Copy matrix B into this matrix at location (insertRow, insertCol). * * @param insertRow First row the matrix is to be inserted into. * @param insertCol First column the matrix is to be inserted into. * @param B The matrix that is being inserted. */ public void insertIntoThis(int insertRow, int insertCol, T B) { convertType.specify(this,B); B = convertType.convert(B); // See if this type's need to be changed or not if( convertType.commonType == getType() ) { insert(B.mat,mat,insertRow,insertCol); } else { T A = convertType.convert(this); A.insert(B.mat,A.mat,insertRow,insertCol); setMatrix(A.mat); } } void insert( Matrix src , Matrix dst , int destY0 , int destX0 ) { ops.extract(src, 0, src.getNumRows(), 0, src.getNumCols(), dst, destY0, destX0); } /** *

* Creates a new matrix that is a combination of this matrix and matrix B. B is * written into A at the specified location if needed the size of A is increased by * growing it. A is grown by padding the new area with zeros. *

* *

* While useful when adding data to a matrix which will be solved for it is also much * less efficient than predeclaring a matrix and inserting data into it. *

* *

* If insertRow or insertCol is set to SimpleMatrix.END then it will be combined * at the last row or column respectively. *

* * @param insertRow Row where matrix B is written in to. * @param insertCol Column where matrix B is written in to. * @param B The matrix that is written into A. * @return A new combined matrix. */ public T combine( int insertRow, int insertCol, T B) { convertType.specify(this,B); T A = convertType.convert(this); B = convertType.convert(B); if( insertRow == SimpleMatrix.END ) { insertRow = mat.getNumRows(); } if( insertCol == SimpleMatrix.END ) { insertCol = mat.getNumCols(); } int maxRow = insertRow + B.numRows(); int maxCol = insertCol + B.numCols(); T ret; if( maxRow > mat.getNumRows() || maxCol > mat.getNumCols()) { int M = Math.max(maxRow,mat.getNumRows()); int N = Math.max(maxCol,mat.getNumCols()); ret = A.createMatrix(M,N, A.getType()); ret.insertIntoThis(0,0,A); } else { ret = A.copy(); } ret.insertIntoThis(insertRow,insertCol,B); return ret; } /** * Returns the maximum absolute value of all the elements in this matrix. This is * equivalent the the infinite p-norm of the matrix. * * @return Largest absolute value of any element. */ public double elementMaxAbs() { return ops.elementMaxAbs(mat); } /** * Returns the minimum absolute value of all the elements in this matrix. * * @return Smallest absolute value of any element. */ public double elementMinAbs() { return ops.elementMinAbs(mat); } /** * Computes the sum of all the elements in the matrix. * * @return Sum of all the elements. */ public double elementSum() { return ops.elementSum(mat); } /** *

* Returns a matrix which is the result of an element by element multiplication of 'this' and 'b': * ci,j = ai,j*bi,j *

* * @param b A simple matrix. * @return The element by element multiplication of 'this' and 'b'. */ public T elementMult( T b ) { convertType.specify(this,b); T A = convertType.convert(this); b = convertType.convert(b); T c = A.createLike(); A.ops.elementMult(A.mat,b.mat,c.mat); return c; } /** *

* Returns a matrix which is the result of an element by element division of 'this' and 'b': * ci,j = ai,j/bi,j *

* * @param b A simple matrix. * @return The element by element division of 'this' and 'b'. */ public T elementDiv( T b ) { convertType.specify(this,b); T A = convertType.convert(this); b = convertType.convert(b); T c = A.createLike(); A.ops.elementDiv(A.mat,b.mat,c.mat); return c; } /** *

* Returns a matrix which is the result of an element by element power of 'this' and 'b': * ci,j = ai,j ^ bi,j *

* * @param b A simple matrix. * @return The element by element power of 'this' and 'b'. */ public T elementPower( T b ) { convertType.specify(this,b); T A = convertType.convert(this); b = convertType.convert(b); T c = A.createLike(); A.ops.elementPower(A.mat,b.mat,c.mat); return c; } /** *

* Returns a matrix which is the result of an element by element power of 'this' and 'b': * ci,j = ai,j ^ b *

* * @param b Scalar * @return The element by element power of 'this' and 'b'. */ public T elementPower( double b ) { T c = createLike(); ops.elementPower(mat,b,c.mat); return c; } /** *

* Returns a matrix which is the result of an element by element exp of 'this' * ci,j = Math.exp(ai,j) *

* * @return The element by element power of 'this' and 'b'. */ public T elementExp() { T c = createLike(); ops.elementExp(mat,c.mat); return c; } /** *

* Returns a matrix which is the result of an element by element exp of 'this' * ci,j = Math.log(ai,j) *

* * @return The element by element power of 'this' and 'b'. */ public T elementLog() { T c = createLike(); ops.elementLog(mat,c.mat); return c; } /** *

* Returns a new matrix whose elements are the negative of 'this' matrix's elements.
*
* bij = -aij *

* * @return A matrix that is the negative of the original. */ public T negative() { T A = copy(); ops.changeSign(A.mat); return A; } /** *

Allows you to perform an equation in-place on this matrix by specifying the right hand side. For information on how to define an equation * see {@link org.ejml.equation.Equation}. The variable sequence alternates between variable and it's label String. * This matrix is by default labeled as 'A', but is a string is the first object in 'variables' then it will take * on that value. The variable passed in can be any data type supported by Equation can be passed in. * This includes matrices and scalars.

* * Examples:
*
     * perform("A = A + B",matrix,"B");     // Matrix addition
     * perform("A + B",matrix,"B");         // Matrix addition with implicit 'A = '
     * perform("A(5,:) = B",matrix,"B");    // Insert a row defined by B into A
     * perform("[A;A]");                    // stack A twice with implicit 'A = '
     * perform("Q = B + 2","Q",matrix,"B"); // Specify the name of 'this' as Q
     *
     * 
* * @param equation String representing the symbol equation * @param variables List of variable names and variables */ public void equation(String equation , Object ...variables ) { if( variables.length >= 25 ) throw new IllegalArgumentException("Too many variables! At most 25"); if( !(mat instanceof DMatrixRMaj)) return; Equation eq = new Equation(); String nameThis = "A"; int offset = 0; if( variables.length > 0 && variables[0] instanceof String ) { nameThis = (String)variables[0]; offset = 1; if( variables.length%2 != 1 ) throw new IllegalArgumentException("Expected and odd length for variables"); } else { if( variables.length%2 != 0 ) throw new IllegalArgumentException("Expected and even length for variables"); } eq.alias((DMatrixRMaj)mat,nameThis); for( int i = offset; i < variables.length; i += 2 ) { if( !(variables[i+1] instanceof String)) throw new IllegalArgumentException("String expected at variables index "+i); Object o = variables[i]; String name = (String)variables[i+1]; if( SimpleBase.class.isAssignableFrom(o.getClass())) { eq.alias(((SimpleBase)o).getDDRM(),name); } else if( o instanceof DMatrixRMaj) { eq.alias((DMatrixRMaj)o, name); } else if( o instanceof Double ){ eq.alias((Double)o,name); } else if( o instanceof Integer ){ eq.alias((Integer)o,name); } else { String type = o == null ? "null" : o.getClass().getSimpleName(); throw new IllegalArgumentException("Variable type not supported by Equation! "+type); } } // see if the assignment is implicit if( !equation.contains("=")) { equation = nameThis+" = "+equation; } eq.process(equation); } /** *

* Saves this matrix to a file as a serialized binary object. *

* * @see MatrixIO#saveBin( DMatrix, String) * * @param fileName * @throws java.io.IOException */ public void saveToFileBinary( String fileName ) throws IOException { MatrixIO.saveBin((DMatrixRMaj)mat, fileName); } /** *

* Loads a new matrix from a serialized binary file. *

* * @see MatrixIO#loadBin(String) * * @param fileName File which is to be loaded. * @return The matrix. * @throws IOException */ public static SimpleMatrix loadBinary( String fileName ) throws IOException { DMatrix mat = MatrixIO.loadBin(fileName); // see if its a DMatrixRMaj if( mat instanceof DMatrixRMaj) { return SimpleMatrix.wrap((DMatrixRMaj)mat); } else { // if not convert it into one and wrap it return SimpleMatrix.wrap( new DMatrixRMaj(mat)); } } /** *

* Saves this matrix to a file in a CSV format. For the file format see {@link MatrixIO}. *

* * @see MatrixIO#saveBin( DMatrix, String) * * @param fileName * @throws java.io.IOException */ public void saveToFileCSV( String fileName ) throws IOException { MatrixIO.saveDenseCSV((DMatrixRMaj)mat, fileName); } /** *

* Loads a new matrix from a CSV file. For the file format see {@link MatrixIO}. *

* * @see MatrixIO#loadCSV(String,boolean) * * @param fileName File which is to be loaded. * @return The matrix. * @throws IOException */ public T loadCSV( String fileName ) throws IOException { DMatrix mat = MatrixIO.loadCSV(fileName,true); T ret = createMatrix(1,1, mat.getType()); ret.setMatrix(mat); return ret; } /** * Returns true of the specified matrix element is valid element inside this matrix. * * @param row Row index. * @param col Column index. * @return true if it is a valid element in the matrix. */ public boolean isInBounds(int row, int col) { return row >= 0 && col >= 0 && row < mat.getNumRows() && col < mat.getNumCols(); } /** * Prints the number of rows and column in this matrix. */ public void printDimensions() { System.out.println("[rows = "+numRows()+" , cols = "+numCols()+" ]"); } /** * Size of internal array elements. 32 or 64 bits */ public int bits() { return mat.getType().getBits(); } /** *

Concatinates all the matrices together along their columns. If the rows do not match the upper elements * are set to zero.

* * A = [ this, m[0] , ... , m[n-1] ] * * @param matrices Set of matrices * @return Resulting matrix */ public T concatColumns( SimpleBase ...matrices ) { convertType.specify0(this,matrices); T A = convertType.convert(this); int numCols = A.numCols(); int numRows = A.numRows(); for (int i = 0; i < matrices.length; i++) { numRows = Math.max(numRows,matrices[i].numRows()); numCols += matrices[i].numCols(); } SimpleMatrix combined = SimpleMatrix.wrap(convertType.commonType.create(numRows,numCols)); A.ops.extract(A.mat,0,A.numRows(),0,A.numCols(),combined.mat,0,0); int col = A.numCols(); for (int i = 0; i < matrices.length; i++) { Matrix m = convertType.convert(matrices[i]).mat; int cols = m.getNumCols(); int rows = m.getNumRows();; A.ops.extract(m,0,rows,0,cols,combined.mat,0,col); col += cols; } return (T)combined; } /** *

Concatinates all the matrices together along their columns. If the rows do not match the upper elements * are set to zero.

* * A = [ this; m[0] ; ... ; m[n-1] ] * * @param matrices Set of matrices * @return Resulting matrix */ public T concatRows( SimpleBase ... matrices ) { convertType.specify0(this,matrices); T A = convertType.convert(this); int numCols = A.numCols(); int numRows = A.numRows(); for (int i = 0; i < matrices.length; i++) { numRows += matrices[i].numRows(); numCols = Math.max(numCols,matrices[i].numCols()); } SimpleMatrix combined = SimpleMatrix.wrap(convertType.commonType.create(numRows,numCols)); A.ops.extract(A.mat,0,A.numRows(),0,A.numCols(),combined.mat,0,0); int row = A.numRows(); for (int i = 0; i < matrices.length; i++) { Matrix m = convertType.convert(matrices[i]).mat; int cols = m.getNumCols(); int rows = m.getNumRows();; A.ops.extract(m,0,rows,0,cols,combined.mat,row,0); row += rows; } return (T)combined; } /** * Extracts the specified rows from the matrix. * @param begin First row. Inclusive. * @param end Last row + 1. * @return Submatrix that contains the specified rows. */ public T rows( int begin , int end ) { return extractMatrix(begin,end,0,SimpleMatrix.END); } /** * Extracts the specified rows from the matrix. * @param begin First row. Inclusive. * @param end Last row + 1. * @return Submatrix that contains the specified rows. */ public T cols( int begin , int end ) { return extractMatrix(0,SimpleMatrix.END, begin, end); } /** * Returns the type of matrix is is wrapping. */ public MatrixType getType() { return mat.getType(); } /** * Creates a matrix that is the same type and shape * @return New matrix */ public T createLike() { return createMatrix(numRows(),numCols(),getType()); } protected void setMatrix( Matrix mat ) { this.mat = mat; this.ops = lookupOps(mat.getType()); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy