org.ejml.simple.SimpleEVD Maven / Gradle / Ivy
Show all versions of ejml-simple Show documentation
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml.simple;
import org.ejml.data.*;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_FDRM;
import org.ejml.interfaces.decomposition.EigenDecomposition;
import org.ejml.interfaces.decomposition.EigenDecomposition_F32;
import org.ejml.interfaces.decomposition.EigenDecomposition_F64;
import org.jetbrains.annotations.Nullable;
import java.util.ArrayList;
import java.util.List;
/**
* Wrapper around EigenDecomposition for SimpleMatrix
*
* @author Peter Abeles
*/
@SuppressWarnings({"unchecked"})
public class SimpleEVD {
private EigenDecomposition eig;
Matrix mat;
public SimpleEVD( Matrix mat ) {
this.mat = mat;
switch (mat.getType()) {
case DDRM: eig = DecompositionFactory_DDRM.eig(mat.getNumCols(), true); break;
case FDRM: eig = DecompositionFactory_FDRM.eig(mat.getNumCols(), true); break;
default: throw new IllegalArgumentException("Matrix type not yet supported. " + mat.getType());
}
if (!eig.decompose(mat))
throw new RuntimeException("Eigenvalue Decomposition failed");
}
/**
* Returns a list of all the eigenvalues
*/
public List getEigenvalues() {
List ret = new ArrayList<>();
if (mat.getType().getBits() == 64) {
EigenDecomposition_F64 d = (EigenDecomposition_F64)eig;
for (int i = 0; i < eig.getNumberOfEigenvalues(); i++) {
ret.add(d.getEigenvalue(i));
}
} else {
EigenDecomposition_F32 d = (EigenDecomposition_F32)eig;
for (int i = 0; i < eig.getNumberOfEigenvalues(); i++) {
Complex_F32 c = d.getEigenvalue(i);
ret.add(new Complex_F64(c.real, c.imaginary));
}
}
return ret;
}
/**
* Returns the number of eigenvalues/eigenvectors. This is the matrix's dimension.
*
* @return number of eigenvalues/eigenvectors.
*/
public int getNumberOfEigenvalues() {
return eig.getNumberOfEigenvalues();
}
/**
*
* Returns an eigenvalue as a complex number. For symmetric matrices the returned eigenvalue will always be a real
* number, which means the imaginary component will be equal to zero.
*
*
*
* NOTE: The order of the eigenvalues is dependent upon the decomposition algorithm used. This means that they may
* or may not be ordered by magnitude. For example the QR algorithm will returns results that are partially
* ordered by magnitude, but this behavior should not be relied upon.
*
*
* @param index Index of the eigenvalue eigenvector pair.
* @return An eigenvalue.
*/
public Complex_F64 getEigenvalue( int index ) {
if (mat.getType().getBits() == 64)
return ((EigenDecomposition_F64)eig).getEigenvalue(index);
else {
Complex_F64 c = ((EigenDecomposition_F64)eig).getEigenvalue(index);
return new Complex_F64(c.real, c.imaginary);
}
}
/**
*
* Used to retrieve real valued eigenvectors. If an eigenvector is associated with a complex eigenvalue
* then null is returned instead.
*
*
* @param index Index of the eigenvalue eigenvector pair.
* @return If the associated eigenvalue is real then an eigenvector is returned, null otherwise.
*/
public @Nullable T getEigenVector( int index ) {
Matrix v = eig.getEigenVector(index);
if (v == null)
return null;
return (T)SimpleMatrix.wrap(v);
}
/**
*
* Computes the quality of the computed decomposition. A value close to or less than 1e-15
* is considered to be within machine precision.
*
*
*
* This function must be called before the original matrix has been modified or else it will
* produce meaningless results.
*
*
* @return Quality of the decomposition.
*/
public /**/double quality() {
if (mat.getType().getBits() == 64) {
return DecompositionFactory_DDRM.quality((DMatrixRMaj)mat, (EigenDecomposition_F64)eig);
} else {
return DecompositionFactory_FDRM.quality((FMatrixRMaj)mat, (EigenDecomposition_F32)eig);
}
}
/**
* Returns the underlying decomposition that this is a wrapper around.
*
* @return EigenDecomposition
*/
public EigenDecomposition getEVD() {
return eig;
}
/**
* Returns the index of the eigenvalue which has the largest magnitude.
*
* @return index of the largest magnitude eigen value.
*/
public int getIndexMax() {
int indexMax = 0;
double max = getEigenvalue(0).getMagnitude2();
final int N = getNumberOfEigenvalues();
for (int i = 1; i < N; i++) {
double m = getEigenvalue(i).getMagnitude2();
if (m > max) {
max = m;
indexMax = i;
}
}
return indexMax;
}
/**
* Returns the index of the eigenvalue which has the smallest magnitude.
*
* @return index of the smallest magnitude eigen value.
*/
public int getIndexMin() {
int indexMin = 0;
double min = getEigenvalue(0).getMagnitude2();
final int N = getNumberOfEigenvalues();
for (int i = 1; i < N; i++) {
double m = getEigenvalue(i).getMagnitude2();
if (m < min) {
min = m;
indexMin = i;
}
}
return indexMin;
}
}