![JAR search and dependency download from the Maven repository](/logo.png)
org.ejml.simple.ops.SimpleOperations_FDRM Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ejml-simple Show documentation
Show all versions of ejml-simple Show documentation
A fast and easy to use dense and sparse matrix linear algebra library written in Java.
The newest version!
/*
* Copyright (c) 2023, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml.simple.ops;
import javax.annotation.Generated;
import org.ejml.data.Complex_F64;
import org.ejml.data.FMatrixRMaj;
import org.ejml.data.Matrix;
import org.ejml.dense.row.CommonOps_FDRM;
import org.ejml.dense.row.CommonOps_MT_FDRM;
import org.ejml.dense.row.MatrixFeatures_FDRM;
import org.ejml.dense.row.NormOps_FDRM;
import org.ejml.dense.row.mult.VectorVectorMult_FDRM;
import org.ejml.ops.MatrixIO;
import org.ejml.simple.ConvertToImaginaryException;
import org.ejml.simple.SimpleOperations;
import java.io.PrintStream;
import static org.ejml.concurrency.EjmlConcurrency.useConcurrent;
//CUSTOM ignore Complex_F64
//CUSTOM ignore org.ejml.data.Complex_F64;
/**
* Implementation of {@link org.ejml.simple.SimpleOperations} for {@link FMatrixRMaj}.
*
* @author Peter Abeles
*/
@Generated("org.ejml.simple.ops.SimpleOperations_DDRM")
public class SimpleOperations_FDRM implements SimpleOperations {
@Override public void set( FMatrixRMaj A, int row, int column, /**/double value ) {
A.set(row, column, (float)value);
}
@Override public void set( FMatrixRMaj A, int row, int column, /**/double real, /**/double imaginary ) {
throw new IllegalArgumentException("Does not support imaginary values");
}
@Override public /**/double get( FMatrixRMaj A, int row, int column ) {
return (float)A.get(row, column);
}
@Override public void get( FMatrixRMaj A, int row, int column, Complex_F64 value ) {
value.real = A.get(row, column);
value.imaginary = 0;
}
@Override public /**/double getReal( FMatrixRMaj A, int row, int column ) {
return A.get(row, column);
}
@Override public /**/double getImaginary( FMatrixRMaj A, int row, int column ) {
return 0;
}
@Override public void fill( FMatrixRMaj A, /**/double value ) {
CommonOps_FDRM.fill(A, (float)value);
}
@Override public void transpose( FMatrixRMaj input, FMatrixRMaj output ) {
if (useConcurrent(input)) {
CommonOps_MT_FDRM.transpose(input, output);
} else {
CommonOps_FDRM.transpose(input, output);
}
}
@Override public void mult( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
if (useConcurrent(A) || useConcurrent(B)) {
CommonOps_MT_FDRM.mult(A, B, output);
} else {
CommonOps_FDRM.mult(A, B, output);
}
}
@Override public void multTransA( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
if (useConcurrent(A) || useConcurrent(B)) {
CommonOps_MT_FDRM.multTransA(A, B, output);
} else {
CommonOps_FDRM.multTransA(A, B, output);
}
}
@Override public void kron( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
CommonOps_FDRM.kron(A, B, output);
}
@Override public void plus( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
CommonOps_FDRM.add(A, B, output);
}
@Override public void minus( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
CommonOps_FDRM.subtract(A, B, output);
}
@Override public void minus( FMatrixRMaj A, /**/double b, FMatrixRMaj output ) {
CommonOps_FDRM.subtract(A, (float)b, output);
}
@Override public void plus( FMatrixRMaj A, /**/double b, FMatrixRMaj output ) {
CommonOps_FDRM.add(A, (float)b, output);
}
@Override public void plus( FMatrixRMaj A, /**/double beta, FMatrixRMaj b, FMatrixRMaj output ) {
CommonOps_FDRM.add(A, (float)beta, b, output);
}
@Override public void plus( /**/double alpha, FMatrixRMaj A, /**/double beta, FMatrixRMaj b, FMatrixRMaj output ) {
CommonOps_FDRM.add((float)alpha, A, (float)beta, b, output);
}
@Override public /**/double dot( FMatrixRMaj A, FMatrixRMaj v ) {
return VectorVectorMult_FDRM.innerProd(A, v);
}
@Override public void scale( FMatrixRMaj A, /**/double val, FMatrixRMaj output ) {
CommonOps_FDRM.scale((float)val, A, output);
}
@Override public void divide( FMatrixRMaj A, /**/double val, FMatrixRMaj output ) {
CommonOps_FDRM.divide(A, (float)val, output);
}
@Override public boolean invert( FMatrixRMaj A, FMatrixRMaj output ) {
return CommonOps_FDRM.invert(A, output);
}
@Override public void setIdentity( FMatrixRMaj A ) {
CommonOps_FDRM.setIdentity(A);
}
@Override public void pseudoInverse( FMatrixRMaj A, FMatrixRMaj output ) {
CommonOps_FDRM.pinv(A, output);
}
@Override public boolean solve( FMatrixRMaj A, FMatrixRMaj X, FMatrixRMaj B ) {
return CommonOps_FDRM.solve(A, B, X);
}
@Override public void zero( FMatrixRMaj A ) {
A.zero();
}
@Override public /**/double normF( FMatrixRMaj A ) {
return NormOps_FDRM.normF(A);
}
@Override public /**/double conditionP2( FMatrixRMaj A ) {
return NormOps_FDRM.conditionP2(A);
}
@Override public /**/double determinant( FMatrixRMaj A ) {
return CommonOps_FDRM.det(A);
}
@Override public /**/double trace( FMatrixRMaj A ) {
return CommonOps_FDRM.trace(A);
}
@Override public void setRow( FMatrixRMaj A, int row, int startColumn, /**/double... values ) {
for (int i = 0; i < values.length; i++) {
A.set(row, startColumn + i, (float)values[i]);
}
}
@Override public void setColumn( FMatrixRMaj A, int column, int startRow, /**/double... values ) {
for (int i = 0; i < values.length; i++) {
A.set(startRow + i, column, (float)values[i]);
}
}
@Override public /**/double[] getRow( FMatrixRMaj A, int row, int idx0, int idx1 ) {
var v = new /**/double[idx1 - idx0];
int index = A.getIndex(row, idx0);
for (int col = idx0; col < idx1; col++) {
v[col-idx0] = A.data[index++];
}
return v;
}
@Override public /**/double[] getColumn( FMatrixRMaj A, int col, int row0, int row1 ) {
var v = new /**/double[row1 - row0];
int index = A.getIndex(row0, col);
for (int row = row0; row < row1; row++, index += A.numCols) {
v[row-row0] = A.data[index];
}
return v;
}
@Override public void extract( FMatrixRMaj src, int srcY0, int srcY1, int srcX0, int srcX1, FMatrixRMaj dst, int dstY0, int dstX0 ) {
CommonOps_FDRM.extract(src, srcY0, srcY1, srcX0, srcX1, dst, dstY0, dstX0);
}
@Override public FMatrixRMaj diag( FMatrixRMaj A ) {
FMatrixRMaj output;
if (MatrixFeatures_FDRM.isVector(A)) {
int N = Math.max(A.numCols, A.numRows);
output = new FMatrixRMaj(N, N);
CommonOps_FDRM.diag(output, N, A.data);
} else {
int N = Math.min(A.numCols, A.numRows);
output = new FMatrixRMaj(N, 1);
CommonOps_FDRM.extractDiag(A, output);
}
return output;
}
@Override public boolean hasUncountable( FMatrixRMaj M ) {
return MatrixFeatures_FDRM.hasUncountable(M);
}
@Override public void changeSign( FMatrixRMaj a ) {
CommonOps_FDRM.changeSign(a);
}
@Override public /**/double elementMax( FMatrixRMaj A ) {
return CommonOps_FDRM.elementMax(A);
}
@Override public /**/double elementMin( FMatrixRMaj A ) {
return CommonOps_FDRM.elementMin(A);
}
@Override public /**/double elementMaxAbs( FMatrixRMaj A ) {
return CommonOps_FDRM.elementMaxAbs(A);
}
@Override public /**/double elementMinAbs( FMatrixRMaj A ) {
return CommonOps_FDRM.elementMinAbs(A);
}
@Override public /**/double elementSum( FMatrixRMaj A ) {
return CommonOps_FDRM.elementSum(A);
}
@Override public void elementMult( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
CommonOps_FDRM.elementMult(A, B, output);
}
@Override public void elementDiv( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
CommonOps_FDRM.elementDiv(A, B, output);
}
@Override public void elementPower( FMatrixRMaj A, FMatrixRMaj B, FMatrixRMaj output ) {
CommonOps_FDRM.elementPower(A, B, output);
}
@Override public void elementPower( FMatrixRMaj A, /**/double b, FMatrixRMaj output ) {
CommonOps_FDRM.elementPower(A, (float)b, output);
}
@Override public void elementExp( FMatrixRMaj A, FMatrixRMaj output ) {
CommonOps_FDRM.elementExp(A, output);
}
@Override public void elementLog( FMatrixRMaj A, FMatrixRMaj output ) {
CommonOps_FDRM.elementLog(A, output);
}
@Override public boolean isIdentical( FMatrixRMaj A, FMatrixRMaj B, /**/double tol ) {
return MatrixFeatures_FDRM.isIdentical(A, B, (float)tol);
}
@Override public void print( PrintStream out, Matrix mat, String format ) {
MatrixIO.print(out, (FMatrixRMaj)mat, format);
}
@Override public void elementOp( FMatrixRMaj A, ElementOpReal op, FMatrixRMaj output ) {
for (int row = 0, index = 0; row < A.numRows; row++) {
for (int col = 0; col < A.numCols; col++, index++ ) {
output.data[index] = (float)op.op(row, col, A.data[index]);
}
}
}
@Override public void elementOp( FMatrixRMaj A, ElementOpComplex op, FMatrixRMaj output ) {
// Output must be complex
throw new ConvertToImaginaryException();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy