org.elasticsearch.client.ml.dataframe.OutlierDetection Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch-rest-high-level-client Show documentation
Show all versions of elasticsearch-rest-high-level-client Show documentation
Elasticsearch subproject :client:rest-high-level
The newest version!
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0 and the Server Side Public License, v 1; you may not use this file except
* in compliance with, at your election, the Elastic License 2.0 or the Server
* Side Public License, v 1.
*/
package org.elasticsearch.client.ml.dataframe;
import org.elasticsearch.common.xcontent.ParseField;
import org.elasticsearch.common.Strings;
import org.elasticsearch.common.xcontent.ObjectParser;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;
import java.io.IOException;
import java.util.Locale;
import java.util.Objects;
public class OutlierDetection implements DataFrameAnalysis {
public static OutlierDetection fromXContent(XContentParser parser) {
return PARSER.apply(parser, null).build();
}
public static OutlierDetection createDefault() {
return builder().build();
}
public static Builder builder() {
return new Builder();
}
public static final ParseField NAME = new ParseField("outlier_detection");
static final ParseField N_NEIGHBORS = new ParseField("n_neighbors");
static final ParseField METHOD = new ParseField("method");
public static final ParseField FEATURE_INFLUENCE_THRESHOLD = new ParseField("feature_influence_threshold");
static final ParseField COMPUTE_FEATURE_INFLUENCE = new ParseField("compute_feature_influence");
static final ParseField OUTLIER_FRACTION = new ParseField("outlier_fraction");
static final ParseField STANDARDIZATION_ENABLED = new ParseField("standardization_enabled");
private static final ObjectParser PARSER = new ObjectParser<>(NAME.getPreferredName(), true, Builder::new);
static {
PARSER.declareInt(Builder::setNNeighbors, N_NEIGHBORS);
PARSER.declareString(Builder::setMethod, Method::fromString, METHOD);
PARSER.declareDouble(Builder::setFeatureInfluenceThreshold, FEATURE_INFLUENCE_THRESHOLD);
PARSER.declareBoolean(Builder::setComputeFeatureInfluence, COMPUTE_FEATURE_INFLUENCE);
PARSER.declareDouble(Builder::setOutlierFraction, OUTLIER_FRACTION);
PARSER.declareBoolean(Builder::setStandardizationEnabled, STANDARDIZATION_ENABLED);
}
/**
* The number of neighbors. Leave unspecified for dynamic detection.
*/
private final Integer nNeighbors;
/**
* The method. Leave unspecified for a dynamic mixture of methods.
*/
private final Method method;
/**
* The min outlier score required to calculate feature influence. Defaults to 0.1.
*/
private final Double featureInfluenceThreshold;
/**
* Whether to compute feature influence or not. Defaults to true.
*/
private final Boolean computeFeatureInfluence;
/**
* The proportion of data assumed to be outlying prior to outlier detection. Defaults to 0.05.
*/
private final Double outlierFraction;
/**
* Whether to perform standardization.
*/
private final Boolean standardizationEnabled;
private OutlierDetection(Integer nNeighbors, Method method, Double featureInfluenceThreshold, Boolean computeFeatureInfluence,
Double outlierFraction, Boolean standardizationEnabled) {
this.nNeighbors = nNeighbors;
this.method = method;
this.featureInfluenceThreshold = featureInfluenceThreshold;
this.computeFeatureInfluence = computeFeatureInfluence;
this.outlierFraction = outlierFraction;
this.standardizationEnabled = standardizationEnabled;
}
@Override
public String getName() {
return NAME.getPreferredName();
}
public Integer getNNeighbors() {
return nNeighbors;
}
public Method getMethod() {
return method;
}
public Double getFeatureInfluenceThreshold() {
return featureInfluenceThreshold;
}
public Boolean getComputeFeatureInfluence() {
return computeFeatureInfluence;
}
public Double getOutlierFraction() {
return outlierFraction;
}
public Boolean getStandardizationEnabled() {
return standardizationEnabled;
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject();
if (nNeighbors != null) {
builder.field(N_NEIGHBORS.getPreferredName(), nNeighbors);
}
if (method != null) {
builder.field(METHOD.getPreferredName(), method);
}
if (featureInfluenceThreshold != null) {
builder.field(FEATURE_INFLUENCE_THRESHOLD.getPreferredName(), featureInfluenceThreshold);
}
if (computeFeatureInfluence != null) {
builder.field(COMPUTE_FEATURE_INFLUENCE.getPreferredName(), computeFeatureInfluence);
}
if (outlierFraction != null) {
builder.field(OUTLIER_FRACTION.getPreferredName(), outlierFraction);
}
if (standardizationEnabled != null) {
builder.field(STANDARDIZATION_ENABLED.getPreferredName(), standardizationEnabled);
}
builder.endObject();
return builder;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
OutlierDetection other = (OutlierDetection) o;
return Objects.equals(nNeighbors, other.nNeighbors)
&& Objects.equals(method, other.method)
&& Objects.equals(featureInfluenceThreshold, other.featureInfluenceThreshold)
&& Objects.equals(computeFeatureInfluence, other.computeFeatureInfluence)
&& Objects.equals(outlierFraction, other.outlierFraction)
&& Objects.equals(standardizationEnabled, other.standardizationEnabled);
}
@Override
public int hashCode() {
return Objects.hash(nNeighbors, method, featureInfluenceThreshold, computeFeatureInfluence, outlierFraction,
standardizationEnabled);
}
@Override
public String toString() {
return Strings.toString(this);
}
public enum Method {
LOF, LDOF, DISTANCE_KTH_NN, DISTANCE_KNN;
public static Method fromString(String value) {
return Method.valueOf(value.toUpperCase(Locale.ROOT));
}
@Override
public String toString() {
return name().toLowerCase(Locale.ROOT);
}
}
public static class Builder {
private Integer nNeighbors;
private Method method;
private Double featureInfluenceThreshold;
private Boolean computeFeatureInfluence;
private Double outlierFraction;
private Boolean standardizationEnabled;
private Builder() {}
public Builder setNNeighbors(Integer nNeighbors) {
this.nNeighbors = nNeighbors;
return this;
}
public Builder setMethod(Method method) {
this.method = method;
return this;
}
public Builder setFeatureInfluenceThreshold(Double featureInfluenceThreshold) {
this.featureInfluenceThreshold = featureInfluenceThreshold;
return this;
}
public Builder setComputeFeatureInfluence(Boolean computeFeatureInfluence) {
this.computeFeatureInfluence = computeFeatureInfluence;
return this;
}
public Builder setOutlierFraction(Double outlierFraction) {
this.outlierFraction = outlierFraction;
return this;
}
public Builder setStandardizationEnabled(Boolean standardizationEnabled) {
this.standardizationEnabled = standardizationEnabled;
return this;
}
public OutlierDetection build() {
return new OutlierDetection(nNeighbors, method, featureInfluenceThreshold, computeFeatureInfluence, outlierFraction,
standardizationEnabled);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy