All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.elasticsearch.index.rankeval.ExpectedReciprocalRank Maven / Gradle / Ivy

The newest version!
/*
 * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
 * or more contributor license agreements. Licensed under the Elastic License
 * 2.0 and the Server Side Public License, v 1; you may not use this file except
 * in compliance with, at your election, the Elastic License 2.0 or the Server
 * Side Public License, v 1.
 */

package org.elasticsearch.index.rankeval;

import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.xcontent.ConstructingObjectParser;
import org.elasticsearch.xcontent.ParseField;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xcontent.XContentParser;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
import java.util.OptionalInt;

import static org.elasticsearch.index.rankeval.EvaluationMetric.joinHitsWithRatings;
import static org.elasticsearch.xcontent.ConstructingObjectParser.constructorArg;
import static org.elasticsearch.xcontent.ConstructingObjectParser.optionalConstructorArg;

/**
 * Implementation of the Expected Reciprocal Rank metric described in:

* * Chapelle, O., Metlzer, D., Zhang, Y., & Grinspan, P. (2009).
* Expected reciprocal rank for graded relevance.
* Proceeding of the 18th ACM Conference on Information and Knowledge Management - CIKM ’09, 621.
* https://doi.org/10.1145/1645953.1646033 */ public class ExpectedReciprocalRank implements EvaluationMetric { /** the default search window size */ private static final int DEFAULT_K = 10; /** the search window size */ private final int k; /** * Optional. If set, this will be the rating for docs that are unrated in the ranking evaluation request */ private final Integer unknownDocRating; private final int maxRelevance; private final double two_pow_maxRelevance; public static final String NAME = "expected_reciprocal_rank"; /** * @param maxRelevance the highest expected relevance in the data */ public ExpectedReciprocalRank(int maxRelevance) { this(maxRelevance, null, DEFAULT_K); } /** * @param maxRelevance * the maximal relevance judgment in the evaluation dataset * @param unknownDocRating * the rating for documents the user hasn't supplied an explicit * rating for. Can be {@code null}, in which case document is * skipped. * @param k * the search window size all request use. */ public ExpectedReciprocalRank(int maxRelevance, @Nullable Integer unknownDocRating, int k) { this.maxRelevance = maxRelevance; this.unknownDocRating = unknownDocRating; this.k = k; // we can pre-calculate the constant used in metric calculation this.two_pow_maxRelevance = Math.pow(2, this.maxRelevance); } ExpectedReciprocalRank(StreamInput in) throws IOException { this.maxRelevance = in.readVInt(); this.unknownDocRating = in.readOptionalVInt(); this.k = in.readVInt(); this.two_pow_maxRelevance = Math.pow(2, this.maxRelevance); } @Override public void writeTo(StreamOutput out) throws IOException { out.writeVInt(maxRelevance); out.writeOptionalVInt(unknownDocRating); out.writeVInt(k); } @Override public String getWriteableName() { return NAME; } int getK() { return this.k; } int getMaxRelevance() { return this.maxRelevance; } /** * get the rating used for unrated documents */ public Integer getUnknownDocRating() { return this.unknownDocRating; } @Override public OptionalInt forcedSearchSize() { return OptionalInt.of(k); } @Override public EvalQueryQuality evaluate(String taskId, SearchHit[] hits, List ratedDocs) { List ratedHits = joinHitsWithRatings(hits, ratedDocs); if (ratedHits.size() > this.k) { ratedHits = ratedHits.subList(0, k); } List ratingsInSearchHits = new ArrayList<>(ratedHits.size()); int unratedResults = 0; for (RatedSearchHit hit : ratedHits) { if (hit.getRating().isPresent()) { ratingsInSearchHits.add(hit.getRating().getAsInt()); } else { // unknownDocRating might be null, in which case unrated docs will be ignored in the dcg calculation. // we still need to add them as a placeholder so the rank of the subsequent ratings is correct ratingsInSearchHits.add(unknownDocRating); } if (hit.getRating().isPresent() == false) { unratedResults++; } } double p = 1; double err = 0; int rank = 1; for (Integer rating : ratingsInSearchHits) { if (rating != null) { double probR = probabilityOfRelevance(rating); err = err + (p * probR / rank); p = p * (1 - probR); } rank++; } EvalQueryQuality evalQueryQuality = new EvalQueryQuality(taskId, err); evalQueryQuality.addHitsAndRatings(ratedHits); evalQueryQuality.setMetricDetails(new Detail(unratedResults)); return evalQueryQuality; } double probabilityOfRelevance(Integer rating) { return (Math.pow(2, rating) - 1) / this.two_pow_maxRelevance; } private static final ParseField K_FIELD = new ParseField("k"); private static final ParseField UNKNOWN_DOC_RATING_FIELD = new ParseField("unknown_doc_rating"); private static final ParseField MAX_RELEVANCE_FIELD = new ParseField("maximum_relevance"); private static final ConstructingObjectParser PARSER = new ConstructingObjectParser<>( "dcg", false, args -> { int maxRelevance = (Integer) args[0]; Integer optK = (Integer) args[2]; return new ExpectedReciprocalRank(maxRelevance, (Integer) args[1], optK == null ? DEFAULT_K : optK); } ); static { PARSER.declareInt(constructorArg(), MAX_RELEVANCE_FIELD); PARSER.declareInt(optionalConstructorArg(), UNKNOWN_DOC_RATING_FIELD); PARSER.declareInt(optionalConstructorArg(), K_FIELD); } public static ExpectedReciprocalRank fromXContent(XContentParser parser) { return PARSER.apply(parser, null); } @Override public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException { builder.startObject(); builder.startObject(NAME); builder.field(MAX_RELEVANCE_FIELD.getPreferredName(), this.maxRelevance); if (unknownDocRating != null) { builder.field(UNKNOWN_DOC_RATING_FIELD.getPreferredName(), this.unknownDocRating); } builder.field(K_FIELD.getPreferredName(), this.k); builder.endObject(); builder.endObject(); return builder; } @Override public final boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null || getClass() != obj.getClass()) { return false; } ExpectedReciprocalRank other = (ExpectedReciprocalRank) obj; return this.k == other.k && this.maxRelevance == other.maxRelevance && Objects.equals(unknownDocRating, other.unknownDocRating); } @Override public final int hashCode() { return Objects.hash(unknownDocRating, k, maxRelevance); } public static final class Detail implements MetricDetail { private static ParseField UNRATED_FIELD = new ParseField("unrated_docs"); private final int unratedDocs; Detail(int unratedDocs) { this.unratedDocs = unratedDocs; } Detail(StreamInput in) throws IOException { this.unratedDocs = in.readVInt(); } @Override public String getMetricName() { return NAME; } @Override public XContentBuilder innerToXContent(XContentBuilder builder, Params params) throws IOException { return builder.field(UNRATED_FIELD.getPreferredName(), this.unratedDocs); } private static final ConstructingObjectParser PARSER = new ConstructingObjectParser<>(NAME, true, args -> { return new Detail((Integer) args[0]); }); static { PARSER.declareInt(constructorArg(), UNRATED_FIELD); } public static Detail fromXContent(XContentParser parser) { return PARSER.apply(parser, null); } @Override public void writeTo(StreamOutput out) throws IOException { out.writeVInt(this.unratedDocs); } @Override public String getWriteableName() { return NAME; } /** * @return the number of unrated documents in the search results */ public Object getUnratedDocs() { return this.unratedDocs; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null || getClass() != obj.getClass()) { return false; } ExpectedReciprocalRank.Detail other = (ExpectedReciprocalRank.Detail) obj; return this.unratedDocs == other.unratedDocs; } @Override public int hashCode() { return Objects.hash(this.unratedDocs); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy