org.elasticsearch.spark.sql.ScalaEsRowRDD.scala Maven / Gradle / Ivy
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.spark.sql
import scala.collection.Map
import org.apache.commons.logging.Log
import org.apache.commons.logging.LogFactory
import org.apache.spark.Partition
import org.apache.spark.SparkContext
import org.apache.spark.TaskContext
import org.apache.spark.sql.Row
import org.elasticsearch.hadoop.cfg.Settings
import org.elasticsearch.hadoop.mr.security.HadoopUserProvider
import org.elasticsearch.hadoop.rest.InitializationUtils
import org.elasticsearch.hadoop.rest.PartitionDefinition
import org.elasticsearch.spark.rdd.AbstractEsRDD
import org.elasticsearch.spark.rdd.AbstractEsRDDIterator
import org.elasticsearch.spark.rdd.EsPartition
import scala.annotation.meta.param
// while we could have just wrapped the ScalaEsRDD and unpack the top-level data into a Row the issue is the underlying Maps are StructTypes
// and as such need to be mapped as Row resulting in either nested wrapping or using a ValueReader and which point wrapping becomes unyielding since the class signatures clash
private[spark] class ScalaEsRowRDD(
@(transient @param) sc: SparkContext,
params: Map[String, String] = Map.empty,
schema: SchemaUtils.Schema)
extends AbstractEsRDD[Row](sc, params) {
override def compute(split: Partition, context: TaskContext): ScalaEsRowRDDIterator = {
new ScalaEsRowRDDIterator(context, split.asInstanceOf[EsPartition].esPartition, schema)
}
}
private[spark] class ScalaEsRowRDDIterator(
context: TaskContext,
partition: PartitionDefinition,
schema: SchemaUtils.Schema)
extends AbstractEsRDDIterator[Row](context, partition) {
override def getLogger() = LogFactory.getLog(classOf[ScalaEsRowRDD])
override def initReader(settings: Settings, log: Log) = {
InitializationUtils.setValueReaderIfNotSet(settings, classOf[ScalaRowValueReader], log)
InitializationUtils.setUserProviderIfNotSet(settings, classOf[HadoopUserProvider], log)
// parse the structure and save the order (requested by Spark) for each Row (root and nested)
// since the data returned from Elastic is likely to not be in the same order
SchemaUtils.setRowInfo(settings, schema.struct)
}
override def createValue(value: Array[Object]): Row = {
// drop the ID
value(1).asInstanceOf[ScalaEsRow]
}
}