org.elasticsearch.spark.sql.package.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch-spark-20_2.11 Show documentation
Show all versions of elasticsearch-spark-20_2.11 Show documentation
Elasticsearch Spark (for Spark 2.X)
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.spark;
import scala.language.implicitConversions
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import scala.reflect.ClassTag
package object sql {
implicit def sqlContextFunctions(sc: SQLContext)= new SQLContextFunctions(sc)
class SQLContextFunctions(sc: SQLContext) extends Serializable {
def esDF() = EsSparkSQL.esDF(sc)
def esDF(resource: String) = EsSparkSQL.esDF(sc, resource)
def esDF(resource: String, query: String) = EsSparkSQL.esDF(sc, resource, query)
def esDF(cfg: scala.collection.Map[String, String]) = EsSparkSQL.esDF(sc, cfg)
def esDF(resource: String, cfg: scala.collection.Map[String, String]) = EsSparkSQL.esDF(sc, resource, cfg)
def esDF(resource: String, query: String, cfg: scala.collection.Map[String, String]) = EsSparkSQL.esDF(sc, resource, query, cfg)
}
// the sparkDatasetFunctions already takes care of this
// but older clients might still import it hence why it's still here
implicit def sparkDataFrameFunctions(df: DataFrame) = new SparkDataFrameFunctions(df)
class SparkDataFrameFunctions(df: DataFrame) extends Serializable {
def saveToEs(resource: String): Unit = { EsSparkSQL.saveToEs(df, resource) }
def saveToEs(resource: String, cfg: scala.collection.Map[String, String]): Unit = { EsSparkSQL.saveToEs(df, resource, cfg) }
def saveToEs(cfg: scala.collection.Map[String, String]): Unit = { EsSparkSQL.saveToEs(df, cfg) }
}
implicit def sparkSessionFunctions(ss: SparkSession)= new SparkSessionFunctions(ss)
class SparkSessionFunctions(ss: SparkSession) extends Serializable {
def esDF() = EsSparkSQL.esDF(ss)
def esDF(resource: String) = EsSparkSQL.esDF(ss, resource)
def esDF(resource: String, query: String) = EsSparkSQL.esDF(ss, resource, query)
def esDF(cfg: scala.collection.Map[String, String]) = EsSparkSQL.esDF(ss, cfg)
def esDF(resource: String, cfg: scala.collection.Map[String, String]) = EsSparkSQL.esDF(ss, resource, cfg)
def esDF(resource: String, query: String, cfg: scala.collection.Map[String, String]) = EsSparkSQL.esDF(ss, resource, query, cfg)
}
implicit def sparkDatasetFunctions[T : ClassTag](ds: Dataset[T]) = new SparkDatasetFunctions(ds)
class SparkDatasetFunctions[T : ClassTag](ds: Dataset[T]) extends Serializable {
def saveToEs(resource: String): Unit = { EsSparkSQL.saveToEs(ds, resource) }
def saveToEs(resource: String, cfg: scala.collection.Map[String, String]): Unit = { EsSparkSQL.saveToEs(ds, resource, cfg) }
def saveToEs(cfg: scala.collection.Map[String, String]): Unit = { EsSparkSQL.saveToEs(ds, cfg) }
}
}