Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package org.apache.lucene.index;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import java.util.Arrays;
import org.apache.lucene.index.MultiTermsEnum.TermsEnumIndex;
import org.apache.lucene.index.MultiTermsEnum.TermsEnumWithSlice;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.InPlaceMergeSorter;
import org.apache.lucene.util.LongValues;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.packed.AppendingPackedLongBuffer;
import org.apache.lucene.util.packed.MonotonicAppendingLongBuffer;
import org.apache.lucene.util.packed.PackedInts;
/** maps per-segment ordinals to/from global ordinal space */
// TODO: we could also have a utility method to merge Terms[] and use size() as a weight when we need it
// TODO: use more efficient packed ints structures?
// TODO: pull this out? its pretty generic (maps between N ord()-enabled TermsEnums)
public class XOrdinalMap implements Accountable {
static {
assert org.elasticsearch.Version.CURRENT.luceneVersion == org.apache.lucene.util.Version.LUCENE_4_9: "Remove this code once we upgrade to Lucene 4.10 (LUCENE-5780, LUCENE-5782)";
}
private static class SegmentMap implements Accountable {
private static final long BASE_RAM_BYTES_USED = RamUsageEstimator.shallowSizeOfInstance(SegmentMap.class);
/** Build a map from an index into a sorted view of `weights` to an index into `weights`. */
private static int[] map(final long[] weights) {
final int[] newToOld = new int[weights.length];
for (int i = 0; i < weights.length; ++i) {
newToOld[i] = i;
}
new InPlaceMergeSorter() {
@Override
protected void swap(int i, int j) {
final int tmp = newToOld[i];
newToOld[i] = newToOld[j];
newToOld[j] = tmp;
}
@Override
protected int compare(int i, int j) {
// j first since we actually want higher weights first
return Long.compare(weights[newToOld[j]], weights[newToOld[i]]);
}
}.sort(0, weights.length);
return newToOld;
}
/** Inverse the map. */
private static int[] inverse(int[] map) {
final int[] inverse = new int[map.length];
for (int i = 0; i < map.length; ++i) {
inverse[map[i]] = i;
}
return inverse;
}
private final int[] newToOld, oldToNew;
SegmentMap(long[] weights) {
newToOld = map(weights);
oldToNew = inverse(newToOld);
assert Arrays.equals(newToOld, inverse(oldToNew));
}
int newToOld(int segment) {
return newToOld[segment];
}
int oldToNew(int segment) {
return oldToNew[segment];
}
@Override
public long ramBytesUsed() {
return BASE_RAM_BYTES_USED + RamUsageEstimator.sizeOf(newToOld) + RamUsageEstimator.sizeOf(oldToNew);
}
}
/**
* Create an ordinal map that uses the number of unique values of each
* {@link SortedDocValues} instance as a weight.
* @see #build(Object, TermsEnum[], long[], float)
*/
public static XOrdinalMap build(Object owner, SortedDocValues[] values, float acceptableOverheadRatio) throws IOException {
final TermsEnum[] subs = new TermsEnum[values.length];
final long[] weights = new long[values.length];
for (int i = 0; i < values.length; ++i) {
subs[i] = values[i].termsEnum();
weights[i] = values[i].getValueCount();
}
return build(owner, subs, weights, acceptableOverheadRatio);
}
/**
* Create an ordinal map that uses the number of unique values of each
* {@link SortedSetDocValues} instance as a weight.
* @see #build(Object, TermsEnum[], long[], float)
*/
public static XOrdinalMap build(Object owner, SortedSetDocValues[] values, float acceptableOverheadRatio) throws IOException {
final TermsEnum[] subs = new TermsEnum[values.length];
final long[] weights = new long[values.length];
for (int i = 0; i < values.length; ++i) {
subs[i] = values[i].termsEnum();
weights[i] = values[i].getValueCount();
}
return build(owner, subs, weights, acceptableOverheadRatio);
}
/**
* Creates an ordinal map that allows mapping ords to/from a merged
* space from subs.
* @param owner a cache key
* @param subs TermsEnums that support {@link TermsEnum#ord()}. They need
* not be dense (e.g. can be FilteredTermsEnums}.
* @param weights a weight for each sub. This is ideally correlated with
* the number of unique terms that each sub introduces compared
* to the other subs
* @throws IOException if an I/O error occurred.
*/
public static XOrdinalMap build(Object owner, TermsEnum subs[], long[] weights, float acceptableOverheadRatio) throws IOException {
if (subs.length != weights.length) {
throw new IllegalArgumentException("subs and weights must have the same length");
}
// enums are not sorted, so let's sort to save memory
final SegmentMap segmentMap = new SegmentMap(weights);
return new XOrdinalMap(owner, subs, segmentMap, acceptableOverheadRatio);
}
private static final long BASE_RAM_BYTES_USED = RamUsageEstimator.shallowSizeOfInstance(XOrdinalMap.class);
// cache key of whoever asked for this awful thing
final Object owner;
// globalOrd -> (globalOrd - segmentOrd) where segmentOrd is the the ordinal in the first segment that contains this term
final MonotonicAppendingLongBuffer globalOrdDeltas;
// globalOrd -> first segment container
final AppendingPackedLongBuffer firstSegments;
// for every segment, segmentOrd -> globalOrd
final LongValues segmentToGlobalOrds[];
// the map from/to segment ids
final SegmentMap segmentMap;
// ram usage
final long ramBytesUsed;
XOrdinalMap(Object owner, TermsEnum subs[], SegmentMap segmentMap, float acceptableOverheadRatio) throws IOException {
// create the ordinal mappings by pulling a termsenum over each sub's
// unique terms, and walking a multitermsenum over those
this.owner = owner;
this.segmentMap = segmentMap;
// even though we accept an overhead ratio, we keep these ones with COMPACT
// since they are only used to resolve values given a global ord, which is
// slow anyway
globalOrdDeltas = new MonotonicAppendingLongBuffer(PackedInts.COMPACT);
firstSegments = new AppendingPackedLongBuffer(PackedInts.COMPACT);
final MonotonicAppendingLongBuffer[] ordDeltas = new MonotonicAppendingLongBuffer[subs.length];
for (int i = 0; i < ordDeltas.length; i++) {
ordDeltas[i] = new MonotonicAppendingLongBuffer(acceptableOverheadRatio);
}
long[] ordDeltaBits = new long[subs.length];
long segmentOrds[] = new long[subs.length];
ReaderSlice slices[] = new ReaderSlice[subs.length];
TermsEnumIndex indexes[] = new TermsEnumIndex[slices.length];
for (int i = 0; i < slices.length; i++) {
slices[i] = new ReaderSlice(0, 0, i);
indexes[i] = new TermsEnumIndex(subs[segmentMap.newToOld(i)], i);
}
MultiTermsEnum mte = new MultiTermsEnum(slices);
mte.reset(indexes);
long globalOrd = 0;
while (mte.next() != null) {
TermsEnumWithSlice matches[] = mte.getMatchArray();
int firstSegmentIndex = Integer.MAX_VALUE;
long globalOrdDelta = Long.MAX_VALUE;
for (int i = 0; i < mte.getMatchCount(); i++) {
int segmentIndex = matches[i].index;
long segmentOrd = matches[i].terms.ord();
long delta = globalOrd - segmentOrd;
// We compute the least segment where the term occurs. In case the
// first segment contains most (or better all) values, this will
// help save significant memory
if (segmentIndex < firstSegmentIndex) {
firstSegmentIndex = segmentIndex;
globalOrdDelta = delta;
}
// for each per-segment ord, map it back to the global term.
while (segmentOrds[segmentIndex] <= segmentOrd) {
ordDeltaBits[segmentIndex] |= delta;
ordDeltas[segmentIndex].add(delta);
segmentOrds[segmentIndex]++;
}
}
// for each unique term, just mark the first segment index/delta where it occurs
assert firstSegmentIndex < segmentOrds.length;
firstSegments.add(firstSegmentIndex);
globalOrdDeltas.add(globalOrdDelta);
globalOrd++;
}
firstSegments.freeze();
globalOrdDeltas.freeze();
for (int i = 0; i < ordDeltas.length; ++i) {
ordDeltas[i].freeze();
}
// ordDeltas is typically the bottleneck, so let's see what we can do to make it faster
segmentToGlobalOrds = new LongValues[subs.length];
long ramBytesUsed = BASE_RAM_BYTES_USED + globalOrdDeltas.ramBytesUsed()
+ firstSegments.ramBytesUsed() + RamUsageEstimator.shallowSizeOf(segmentToGlobalOrds)
+ segmentMap.ramBytesUsed();
for (int i = 0; i < ordDeltas.length; ++i) {
final MonotonicAppendingLongBuffer deltas = ordDeltas[i];
if (ordDeltaBits[i] == 0L) {
// segment ords perfectly match global ordinals
// likely in case of low cardinalities and large segments
segmentToGlobalOrds[i] = LongValues.IDENTITY;
} else {
final int bitsRequired = ordDeltaBits[i] < 0 ? 64 : PackedInts.bitsRequired(ordDeltaBits[i]);
final long monotonicBits = deltas.ramBytesUsed() * 8;
final long packedBits = bitsRequired * deltas.size();
if (deltas.size() <= Integer.MAX_VALUE
&& packedBits <= monotonicBits * (1 + acceptableOverheadRatio)) {
// monotonic compression mostly adds overhead, let's keep the mapping in plain packed ints
final int size = (int) deltas.size();
final PackedInts.Mutable newDeltas = PackedInts.getMutable(size, bitsRequired, acceptableOverheadRatio);
final MonotonicAppendingLongBuffer.Iterator it = deltas.iterator();
for (int ord = 0; ord < size; ++ord) {
newDeltas.set(ord, it.next());
}
assert !it.hasNext();
segmentToGlobalOrds[i] = new LongValues() {
@Override
public long get(long ord) {
return ord + newDeltas.get((int) ord);
}
};
ramBytesUsed += newDeltas.ramBytesUsed();
} else {
segmentToGlobalOrds[i] = new LongValues() {
@Override
public long get(long ord) {
return ord + deltas.get(ord);
}
};
ramBytesUsed += deltas.ramBytesUsed();
}
ramBytesUsed += RamUsageEstimator.shallowSizeOf(segmentToGlobalOrds[i]);
}
}
this.ramBytesUsed = ramBytesUsed;
}
/**
* Given a segment number, return a {@link LongValues} instance that maps
* segment ordinals to global ordinals.
*/
public LongValues getGlobalOrds(int segmentIndex) {
return segmentToGlobalOrds[segmentMap.oldToNew(segmentIndex)];
}
/**
* Given global ordinal, returns the ordinal of the first segment which contains
* this ordinal (the corresponding to the segment return {@link #getFirstSegmentNumber}).
*/
public long getFirstSegmentOrd(long globalOrd) {
return globalOrd - globalOrdDeltas.get(globalOrd);
}
/**
* Given a global ordinal, returns the index of the first
* segment that contains this term.
*/
public int getFirstSegmentNumber(long globalOrd) {
return segmentMap.newToOld((int) firstSegments.get(globalOrd));
}
/**
* Returns the total number of unique terms in global ord space.
*/
public long getValueCount() {
return globalOrdDeltas.size();
}
@Override
public long ramBytesUsed() {
return ramBytesUsed;
}
}