org.apache.lucene.queries.BlendedTermQuery Maven / Gradle / Ivy
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.lucene.queries;
import com.google.common.primitives.Ints;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexReaderContext;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermContext;
import org.apache.lucene.index.TermState;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.DisjunctionMaxQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.InPlaceMergeSorter;
import org.apache.lucene.util.ToStringUtils;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
/**
* BlendedTermQuery can be used to unify term statistics across
* one or more fields in the index. A common problem with structured
* documents is that a term that is significant in on field might not be
* significant in other fields like in a scenario where documents represent
* users with a "first_name" and a "second_name". When someone searches
* for "simon" it will very likely get "paul simon" first since "simon" is a
* an uncommon last name ie. has a low document frequency. This query
* tries to "lie" about the global statistics like document frequency as well
* total term frequency to rank based on the estimated statistics.
*
* While aggregating the total term frequency is trivial since it
* can be summed up not every {@link org.apache.lucene.search.similarities.Similarity}
* makes use of this statistic. The document frequency which is used in the
* {@link org.apache.lucene.search.similarities.DefaultSimilarity}
* can only be estimated as an lower-bound since it is a document based statistic. For
* the document frequency the maximum frequency across all fields per term is used
* which is the minimum number of documents the terms occurs in.
*
*/
// TODO maybe contribute to Lucene
public abstract class BlendedTermQuery extends Query {
private final Term[] terms;
private final float[] boosts;
public BlendedTermQuery(Term[] terms, float[] boosts) {
if (terms == null || terms.length == 0) {
throw new IllegalArgumentException("terms must not be null or empty");
}
if (boosts != null && boosts.length != terms.length) {
throw new IllegalArgumentException("boosts must have the same size as terms");
}
this.terms = terms;
this.boosts = boosts;
}
@Override
public Query rewrite(IndexReader reader) throws IOException {
IndexReaderContext context = reader.getContext();
TermContext[] ctx = new TermContext[terms.length];
int[] docFreqs = new int[ctx.length];
for (int i = 0; i < terms.length; i++) {
ctx[i] = TermContext.build(context, terms[i]);
docFreqs[i] = ctx[i].docFreq();
}
final int maxDoc = reader.maxDoc();
blend(ctx, maxDoc, reader);
Query query = topLevelQuery(terms, ctx, docFreqs, maxDoc);
query.setBoost(getBoost());
return query;
}
protected abstract Query topLevelQuery(Term[] terms, TermContext[] ctx, int[] docFreqs, int maxDoc);
protected void blend(final TermContext[] contexts, int maxDoc, IndexReader reader) throws IOException {
if (contexts.length <= 1) {
return;
}
int max = 0;
long minSumTTF = Long.MAX_VALUE;
for (int i = 0; i < contexts.length; i++) {
TermContext ctx = contexts[i];
int df = ctx.docFreq();
// we use the max here since it's the only "true" estimation we can make here
// at least max(df) documents have that term. Sum or Averages don't seem
// to have a significant meaning here.
// TODO: Maybe it could also make sense to assume independent distributions of documents and eg. have:
// df = df1 + df2 - (df1 * df2 / maxDoc)?
max = Math.max(df, max);
if (minSumTTF != -1 && ctx.totalTermFreq() != -1) {
// we need to find out the minimum sumTTF to adjust the statistics
// otherwise the statistics don't match
minSumTTF = Math.min(minSumTTF, reader.getSumTotalTermFreq(terms[i].field()));
} else {
minSumTTF = -1;
}
}
if (minSumTTF != -1 && maxDoc > minSumTTF) {
maxDoc = (int)minSumTTF;
}
if (max == 0) {
return; // we are done that term doesn't exist at all
}
long sumTTF = minSumTTF == -1 ? -1 : 0;
final int[] tieBreak = new int[contexts.length];
for (int i = 0; i < tieBreak.length; ++i) {
tieBreak[i] = i;
}
new InPlaceMergeSorter() {
@Override
protected void swap(int i, int j) {
final int tmp = tieBreak[i];
tieBreak[i] = tieBreak[j];
tieBreak[j] = tmp;
}
@Override
protected int compare(int i, int j) {
return Ints.compare(contexts[tieBreak[j]].docFreq(), contexts[tieBreak[i]].docFreq());
}
}.sort(0, tieBreak.length);
int prev = contexts[tieBreak[0]].docFreq();
int actualDf = Math.min(maxDoc, max);
assert actualDf >=0 : "DF must be >= 0";
// here we try to add a little bias towards
// the more popular (more frequent) fields
// that acts as a tie breaker
for (int i : tieBreak) {
TermContext ctx = contexts[i];
if (ctx.docFreq() == 0) {
break;
}
final int current = ctx.docFreq();
if (prev > current) {
actualDf++;
}
contexts[i] = ctx = adjustDF(ctx, Math.min(maxDoc, actualDf));
prev = current;
if (sumTTF >= 0 && ctx.totalTermFreq() >= 0) {
sumTTF += ctx.totalTermFreq();
} else {
sumTTF = -1; // omit once TF is omitted anywhere!
}
}
sumTTF = Math.min(sumTTF, minSumTTF);
for (int i = 0; i < contexts.length; i++) {
int df = contexts[i].docFreq();
if (df == 0) {
continue;
}
// the blended sumTTF can't be greater than the sumTTTF on the field
final long fixedTTF = sumTTF == -1 ? -1 : sumTTF;
contexts[i] = adjustTTF(contexts[i], fixedTTF);
}
}
private TermContext adjustTTF(TermContext termContext, long sumTTF) {
if (sumTTF == -1 && termContext.totalTermFreq() == -1) {
return termContext;
}
TermContext newTermContext = new TermContext(termContext.topReaderContext);
List leaves = termContext.topReaderContext.leaves();
final int len;
if (leaves == null) {
len = 1;
} else {
len = leaves.size();
}
int df = termContext.docFreq();
long ttf = sumTTF;
for (int i = 0; i < len; i++) {
TermState termState = termContext.get(i);
if (termState == null) {
continue;
}
newTermContext.register(termState, i, df, ttf);
df = 0;
ttf = 0;
}
return newTermContext;
}
private static TermContext adjustDF(TermContext ctx, int newDocFreq) {
// Use a value of ttf that is consistent with the doc freq (ie. gte)
long newTTF;
if (ctx.totalTermFreq() < 0) {
newTTF = -1;
} else {
newTTF = Math.max(ctx.totalTermFreq(), newDocFreq);
}
List leaves = ctx.topReaderContext.leaves();
final int len;
if (leaves == null) {
len = 1;
} else {
len = leaves.size();
}
TermContext newCtx = new TermContext(ctx.topReaderContext);
for (int i = 0; i < len; ++i) {
TermState termState = ctx.get(i);
if (termState == null) {
continue;
}
newCtx.register(termState, i, newDocFreq, newTTF);
newDocFreq = 0;
newTTF = 0;
}
return newCtx;
}
@Override
public String toString(String field) {
StringBuilder builder = new StringBuilder("blended(terms:[");
for (int i = 0; i < terms.length; ++i) {
builder.append(terms[i]);
float boost = 1f;
if (boosts != null) {
boost = boosts[i];
}
builder.append(ToStringUtils.boost(boost));
builder.append(", ");
}
if (terms.length > 0) {
builder.setLength(builder.length() - 2);
}
builder.append("])");
builder.append(ToStringUtils.boost(getBoost()));
return builder.toString();
}
private volatile Term[] equalTerms = null;
private Term[] equalsTerms() {
if (terms.length == 1) {
return terms;
}
if (equalTerms == null) {
// sort the terms to make sure equals and hashCode are consistent
// this should be a very small cost and equivalent to a HashSet but less object creation
final Term[] t = new Term[terms.length];
System.arraycopy(terms, 0, t, 0, terms.length);
ArrayUtil.timSort(t);
equalTerms = t;
}
return equalTerms;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
if (!super.equals(o)) return false;
BlendedTermQuery that = (BlendedTermQuery) o;
if (!Arrays.equals(equalsTerms(), that.equalsTerms())) return false;
return true;
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + Arrays.hashCode(equalsTerms());
return result;
}
public static BlendedTermQuery booleanBlendedQuery(Term[] terms, final boolean disableCoord) {
return booleanBlendedQuery(terms, null, disableCoord);
}
public static BlendedTermQuery booleanBlendedQuery(Term[] terms, final float[] boosts, final boolean disableCoord) {
return new BlendedTermQuery(terms, boosts) {
@Override
protected Query topLevelQuery(Term[] terms, TermContext[] ctx, int[] docFreqs, int maxDoc) {
BooleanQuery query = new BooleanQuery(disableCoord);
for (int i = 0; i < terms.length; i++) {
TermQuery termQuery = new TermQuery(terms[i], ctx[i]);
if (boosts != null) {
termQuery.setBoost(boosts[i]);
}
query.add(termQuery, BooleanClause.Occur.SHOULD);
}
return query;
}
};
}
public static BlendedTermQuery commonTermsBlendedQuery(Term[] terms, final float[] boosts, final boolean disableCoord, final float maxTermFrequency) {
return new BlendedTermQuery(terms, boosts) {
@Override
protected Query topLevelQuery(Term[] terms, TermContext[] ctx, int[] docFreqs, int maxDoc) {
BooleanQuery query = new BooleanQuery(true);
BooleanQuery high = new BooleanQuery(disableCoord);
BooleanQuery low = new BooleanQuery(disableCoord);
for (int i = 0; i < terms.length; i++) {
TermQuery termQuery = new TermQuery(terms[i], ctx[i]);
if (boosts != null) {
termQuery.setBoost(boosts[i]);
}
if ((maxTermFrequency >= 1f && docFreqs[i] > maxTermFrequency)
|| (docFreqs[i] > (int) Math.ceil(maxTermFrequency
* (float) maxDoc))) {
high.add(termQuery, BooleanClause.Occur.SHOULD);
} else {
low.add(termQuery, BooleanClause.Occur.SHOULD);
}
}
if (low.clauses().isEmpty()) {
for (BooleanClause booleanClause : high) {
booleanClause.setOccur(BooleanClause.Occur.MUST);
}
return high;
} else if (high.clauses().isEmpty()) {
return low;
} else {
query.add(high, BooleanClause.Occur.SHOULD);
query.add(low, BooleanClause.Occur.MUST);
return query;
}
}
};
}
public static BlendedTermQuery dismaxBlendedQuery(Term[] terms, final float tieBreakerMultiplier) {
return dismaxBlendedQuery(terms, null, tieBreakerMultiplier);
}
public static BlendedTermQuery dismaxBlendedQuery(Term[] terms, final float[] boosts, final float tieBreakerMultiplier) {
return new BlendedTermQuery(terms, boosts) {
@Override
protected Query topLevelQuery(Term[] terms, TermContext[] ctx, int[] docFreqs, int maxDoc) {
DisjunctionMaxQuery query = new DisjunctionMaxQuery(tieBreakerMultiplier);
for (int i = 0; i < terms.length; i++) {
TermQuery termQuery = new TermQuery(terms[i], ctx[i]);
if (boosts != null) {
termQuery.setBoost(boosts[i]);
}
query.add(termQuery);
}
return query;
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy