
org.elasticsearch.common.io.stream.StreamInput Maven / Gradle / Ivy
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0 and the Server Side Public License, v 1; you may not use this file except
* in compliance with, at your election, the Elastic License 2.0 or the Server
* Side Public License, v 1.
*/
package org.elasticsearch.common.io.stream;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.BitUtil;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.CharsRef;
import org.elasticsearch.ElasticsearchException;
import org.elasticsearch.Version;
import org.elasticsearch.common.Strings;
import org.elasticsearch.common.bytes.BytesArray;
import org.elasticsearch.common.bytes.BytesReference;
import org.elasticsearch.common.bytes.ReleasableBytesReference;
import org.elasticsearch.common.collect.ImmutableOpenMap;
import org.elasticsearch.common.geo.GeoPoint;
import org.elasticsearch.common.settings.SecureString;
import org.elasticsearch.common.text.Text;
import org.elasticsearch.common.time.DateUtils;
import org.elasticsearch.core.CharArrays;
import org.elasticsearch.core.Nullable;
import org.elasticsearch.core.TimeValue;
import org.elasticsearch.script.JodaCompatibleZonedDateTime;
import org.joda.time.DateTimeZone;
import java.io.EOFException;
import java.io.FilterInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.time.Instant;
import java.time.LocalTime;
import java.time.OffsetTime;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.ZonedDateTime;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Date;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
import java.util.function.IntFunction;
/**
* A stream from this node to another node. Technically, it can also be streamed to a byte array but that is mostly for testing.
*
* This class's methods are optimized so you can put the methods that read and write a class next to each other and you can scan them
* visually for differences. That means that most variables should be read and written in a single line so even large objects fit both
* reading and writing on the screen. It also means that the methods on this class are named very similarly to {@link StreamOutput}. Finally
* it means that the "barrier to entry" for adding new methods to this class is relatively low even though it is a shared class with code
* everywhere. That being said, this class deals primarily with {@code List}s rather than Arrays. For the most part calls should adapt to
* lists, either by storing {@code List}s internally or just converting to and from a {@code List} when calling. This comment is repeated
* on {@link StreamInput}.
*/
public abstract class StreamInput extends InputStream {
private Version version = Version.CURRENT;
/**
* The version of the node on the other side of this stream.
*/
public Version getVersion() {
return this.version;
}
/**
* Set the version of the node on the other side of this stream.
*/
public void setVersion(Version version) {
this.version = version;
}
/**
* Reads and returns a single byte.
*/
public abstract byte readByte() throws IOException;
/**
* Reads a specified number of bytes into an array at the specified offset.
*
* @param b the array to read bytes into
* @param offset the offset in the array to start storing bytes
* @param len the number of bytes to read
*/
public abstract void readBytes(byte[] b, int offset, int len) throws IOException;
/**
* Reads a bytes reference from this stream, copying any bytes read to a new {@code byte[]}. Use {@link #readReleasableBytesReference()}
* when reading large bytes references where possible top avoid needless allocations and copying.
*/
public BytesReference readBytesReference() throws IOException {
int length = readArraySize();
return readBytesReference(length);
}
/**
* Reads a releasable bytes reference from this stream. Unlike {@link #readBytesReference()} the returned bytes reference may reference
* bytes in a pooled buffer and must be explicitly released via {@link ReleasableBytesReference#close()} once no longer used.
* Prefer this method over {@link #readBytesReference()} when reading large bytes references to avoid allocations and copying.
*/
public ReleasableBytesReference readReleasableBytesReference() throws IOException {
return ReleasableBytesReference.wrap(readBytesReference());
}
/**
* Reads an optional bytes reference from this stream. It might hold an actual reference to the underlying bytes of the stream. Use this
* only if you must differentiate null from empty. Use {@link StreamInput#readBytesReference()} and
* {@link StreamOutput#writeBytesReference(BytesReference)} if you do not.
*/
@Nullable
public BytesReference readOptionalBytesReference() throws IOException {
int length = readVInt() - 1;
if (length < 0) {
return null;
}
return readBytesReference(length);
}
/**
* Reads a bytes reference from this stream, might hold an actual reference to the underlying
* bytes of the stream.
*/
public BytesReference readBytesReference(int length) throws IOException {
if (length == 0) {
return BytesArray.EMPTY;
}
byte[] bytes = new byte[length];
readBytes(bytes, 0, length);
return new BytesArray(bytes, 0, length);
}
public BytesRef readBytesRef() throws IOException {
int length = readArraySize();
return readBytesRef(length);
}
public BytesRef readBytesRef(int length) throws IOException {
if (length == 0) {
return new BytesRef();
}
byte[] bytes = new byte[length];
readBytes(bytes, 0, length);
return new BytesRef(bytes, 0, length);
}
public void readFully(byte[] b) throws IOException {
readBytes(b, 0, b.length);
}
public short readShort() throws IOException {
return (short) (((readByte() & 0xFF) << 8) | (readByte() & 0xFF));
}
/**
* Reads four bytes and returns an int.
*/
public int readInt() throws IOException {
return ((readByte() & 0xFF) << 24) | ((readByte() & 0xFF) << 16) | ((readByte() & 0xFF) << 8) | (readByte() & 0xFF);
}
/**
* Reads an optional {@link Integer}.
*/
public Integer readOptionalInt() throws IOException {
if (readBoolean()) {
return readInt();
}
return null;
}
/**
* Reads an int stored in variable-length format. Reads between one and
* five bytes. Smaller values take fewer bytes. Negative numbers
* will always use all 5 bytes and are therefore better serialized
* using {@link #readInt}
*/
public int readVInt() throws IOException {
return readVIntSlow();
}
protected final int readVIntSlow() throws IOException {
byte b = readByte();
int i = b & 0x7F;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7F) << 7;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7F) << 14;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7F) << 21;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
if ((b & 0x80) != 0) {
throwOnBrokenVInt(b, i);
}
return i | ((b & 0x7F) << 28);
}
protected static void throwOnBrokenVInt(byte b, int accumulated) throws IOException {
throw new IOException("Invalid vInt ((" + Integer.toHexString(b) + " & 0x7f) << 28) | " + Integer.toHexString(accumulated));
}
/**
* Reads eight bytes and returns a long.
*/
public long readLong() throws IOException {
return (((long) readInt()) << 32) | (readInt() & 0xFFFFFFFFL);
}
/**
* Reads a long stored in variable-length format. Reads between one and ten bytes. Smaller values take fewer bytes. Negative numbers
* are encoded in ten bytes so prefer {@link #readLong()} or {@link #readZLong()} for negative numbers.
*/
public long readVLong() throws IOException {
return readVLongSlow();
}
protected final long readVLongSlow() throws IOException {
byte b = readByte();
long i = b & 0x7FL;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 7;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 14;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 21;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 28;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 35;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 42;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= (b & 0x7FL) << 49;
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
i |= ((b & 0x7FL) << 56);
if ((b & 0x80) == 0) {
return i;
}
b = readByte();
if (b != 0 && b != 1) {
throwOnBrokenVLong(b, i);
}
i |= ((long) b) << 63;
return i;
}
protected static void throwOnBrokenVLong(byte b, long accumulated) throws IOException {
throw new IOException("Invalid vlong (" + Integer.toHexString(b) + " << 63) | " + Long.toHexString(accumulated));
}
@Nullable
public Long readOptionalVLong() throws IOException {
if (readBoolean()) {
return readVLong();
}
return null;
}
public long readZLong() throws IOException {
long accumulator = 0L;
int i = 0;
long currentByte;
while (((currentByte = readByte()) & 0x80L) != 0) {
accumulator |= (currentByte & 0x7F) << i;
i += 7;
if (i > 63) {
throw new IOException("variable-length stream is too long");
}
}
return BitUtil.zigZagDecode(accumulator | (currentByte << i));
}
@Nullable
public Long readOptionalLong() throws IOException {
if (readBoolean()) {
return readLong();
}
return null;
}
public BigInteger readBigInteger() throws IOException {
return new BigInteger(readString());
}
@Nullable
public Text readOptionalText() throws IOException {
int length = readInt();
if (length == -1) {
return null;
}
return new Text(readBytesReference(length));
}
public Text readText() throws IOException {
// use StringAndBytes so we can cache the string if its ever converted to it
int length = readInt();
return new Text(readBytesReference(length));
}
@Nullable
public String readOptionalString() throws IOException {
if (readBoolean()) {
return readString();
}
return null;
}
@Nullable
public SecureString readOptionalSecureString() throws IOException {
SecureString value = null;
BytesReference bytesRef = readOptionalBytesReference();
if (bytesRef != null) {
byte[] bytes = BytesReference.toBytes(bytesRef);
try {
value = new SecureString(CharArrays.utf8BytesToChars(bytes));
} finally {
Arrays.fill(bytes, (byte) 0);
}
}
return value;
}
@Nullable
public Float readOptionalFloat() throws IOException {
if (readBoolean()) {
return readFloat();
}
return null;
}
@Nullable
public Integer readOptionalVInt() throws IOException {
if (readBoolean()) {
return readVInt();
}
return null;
}
// Maximum char-count to de-serialize via the thread-local CharsRef buffer
private static final int SMALL_STRING_LIMIT = 1024;
// Reusable bytes for deserializing strings
private static final ThreadLocal stringReadBuffer = ThreadLocal.withInitial(() -> new byte[1024]);
// Thread-local buffer for smaller strings
private static final ThreadLocal smallSpare = ThreadLocal.withInitial(() -> new CharsRef(SMALL_STRING_LIMIT));
// Larger buffer used for long strings that can't fit into the thread-local buffer
// We don't use a CharsRefBuilder since we exactly know the size of the character array up front
// this prevents calling grow for every character since we don't need this
private CharsRef largeSpare;
public String readString() throws IOException {
final int charCount = readArraySize();
final CharsRef charsRef;
if (charCount > SMALL_STRING_LIMIT) {
if (largeSpare == null) {
largeSpare = new CharsRef(ArrayUtil.oversize(charCount, Character.BYTES));
} else if (largeSpare.chars.length < charCount) {
// we don't use ArrayUtils.grow since there is no need to copy the array
largeSpare.chars = new char[ArrayUtil.oversize(charCount, Character.BYTES)];
}
charsRef = largeSpare;
} else {
charsRef = smallSpare.get();
}
charsRef.length = charCount;
int charsOffset = 0;
int offsetByteArray = 0;
int sizeByteArray = 0;
int missingFromPartial = 0;
final byte[] byteBuffer = stringReadBuffer.get();
final char[] charBuffer = charsRef.chars;
for (; charsOffset < charCount;) {
final int charsLeft = charCount - charsOffset;
int bufferFree = byteBuffer.length - sizeByteArray;
// Determine the minimum amount of bytes that are left in the string
final int minRemainingBytes;
if (missingFromPartial > 0) {
// One byte for each remaining char except for the already partially read char
minRemainingBytes = missingFromPartial + charsLeft - 1;
missingFromPartial = 0;
} else {
// Each char has at least a single byte
minRemainingBytes = charsLeft;
}
final int toRead;
if (bufferFree < minRemainingBytes) {
// We don't have enough space left in the byte array to read as much as we'd like to so we free up as many bytes in the
// buffer by moving unused bytes that didn't make up a full char in the last iteration to the beginning of the buffer,
// if there are any
if (offsetByteArray > 0) {
sizeByteArray = sizeByteArray - offsetByteArray;
switch (sizeByteArray) { // We only have 0, 1 or 2 => no need to bother with a native call to System#arrayCopy
case 1:
byteBuffer[0] = byteBuffer[offsetByteArray];
break;
case 2:
byteBuffer[0] = byteBuffer[offsetByteArray];
byteBuffer[1] = byteBuffer[offsetByteArray + 1];
break;
}
assert sizeByteArray <= 2 : "We never copy more than 2 bytes here since a char is 3 bytes max";
toRead = Math.min(bufferFree + offsetByteArray, minRemainingBytes);
offsetByteArray = 0;
} else {
toRead = bufferFree;
}
} else {
toRead = minRemainingBytes;
}
readBytes(byteBuffer, sizeByteArray, toRead);
sizeByteArray += toRead;
// As long as we at least have three bytes buffered we don't need to do any bounds checking when getting the next char since we
// read 3 bytes per char/iteration at most
for (; offsetByteArray < sizeByteArray - 2; offsetByteArray++) {
final int c = byteBuffer[offsetByteArray] & 0xff;
switch (c >> 4) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
charBuffer[charsOffset++] = (char) c;
break;
case 12:
case 13:
charBuffer[charsOffset++] = (char) ((c & 0x1F) << 6 | byteBuffer[++offsetByteArray] & 0x3F);
break;
case 14:
charBuffer[charsOffset++] = (char) ((c & 0x0F) << 12 | (byteBuffer[++offsetByteArray] & 0x3F) << 6
| (byteBuffer[++offsetByteArray] & 0x3F));
break;
default:
throwOnBrokenChar(c);
}
}
// try to extract chars from remaining bytes with bounds checks for multi-byte chars
final int bufferedBytesRemaining = sizeByteArray - offsetByteArray;
for (int i = 0; i < bufferedBytesRemaining; i++) {
final int c = byteBuffer[offsetByteArray] & 0xff;
switch (c >> 4) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
charBuffer[charsOffset++] = (char) c;
offsetByteArray++;
break;
case 12:
case 13:
missingFromPartial = 2 - (bufferedBytesRemaining - i);
if (missingFromPartial == 0) {
offsetByteArray++;
charBuffer[charsOffset++] = (char) ((c & 0x1F) << 6 | byteBuffer[offsetByteArray++] & 0x3F);
}
++i;
break;
case 14:
missingFromPartial = 3 - (bufferedBytesRemaining - i);
++i;
break;
default:
throwOnBrokenChar(c);
}
}
}
return charsRef.toString();
}
private static void throwOnBrokenChar(int c) throws IOException {
throw new IOException("Invalid string; unexpected character: " + c + " hex: " + Integer.toHexString(c));
}
public SecureString readSecureString() throws IOException {
BytesReference bytesRef = readBytesReference();
byte[] bytes = BytesReference.toBytes(bytesRef);
try {
return new SecureString(CharArrays.utf8BytesToChars(bytes));
} finally {
Arrays.fill(bytes, (byte) 0);
}
}
public final float readFloat() throws IOException {
return Float.intBitsToFloat(readInt());
}
public final double readDouble() throws IOException {
return Double.longBitsToDouble(readLong());
}
@Nullable
public final Double readOptionalDouble() throws IOException {
if (readBoolean()) {
return readDouble();
}
return null;
}
/**
* Reads a boolean.
*/
public final boolean readBoolean() throws IOException {
return readBoolean(readByte());
}
private boolean readBoolean(final byte value) {
if (value == 0) {
return false;
} else if (value == 1) {
return true;
} else {
final String message = String.format(Locale.ROOT, "unexpected byte [0x%02x]", value);
throw new IllegalStateException(message);
}
}
@Nullable
public final Boolean readOptionalBoolean() throws IOException {
final byte value = readByte();
if (value == 2) {
return null;
} else {
return readBoolean(value);
}
}
/**
* Closes the stream to further operations.
*/
@Override
public abstract void close() throws IOException;
@Override
public abstract int available() throws IOException;
public String[] readStringArray() throws IOException {
int size = readArraySize();
if (size == 0) {
return Strings.EMPTY_ARRAY;
}
String[] ret = new String[size];
for (int i = 0; i < size; i++) {
ret[i] = readString();
}
return ret;
}
@Nullable
public String[] readOptionalStringArray() throws IOException {
if (readBoolean()) {
return readStringArray();
}
return null;
}
/**
* If the returned map contains any entries it will be mutable. If it is empty it might be immutable.
*/
public Map readMap(Writeable.Reader keyReader, Writeable.Reader valueReader) throws IOException {
return readMap(keyReader, valueReader, HashMap::new);
}
public Map readOrderedMap(Writeable.Reader keyReader, Writeable.Reader valueReader) throws IOException {
return readMap(keyReader, valueReader, LinkedHashMap::new);
}
private Map readMap(Writeable.Reader keyReader, Writeable.Reader valueReader, IntFunction
© 2015 - 2025 Weber Informatics LLC | Privacy Policy