org.apache.lucene.search.XCombinedFieldQuery Maven / Gradle / Ivy
/* @notice
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Modifications copyright (C) 2020 Elasticsearch B.V.
*/
package org.apache.lucene.search;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FieldInfos;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.PostingsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermState;
import org.apache.lucene.index.TermStates;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.similarities.BM25Similarity;
import org.apache.lucene.search.similarities.DFRSimilarity;
import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.search.similarities.SimilarityBase;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.SmallFloat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.TreeMap;
/**
*
* Copy of {@link CombinedFieldQuery} that contains a fix for LUCENE-9999.
* TODO: remove once LUCENE-9999 is fixed and integrated
*
* A {@link Query} that treats multiple fields as a single stream and scores terms as if you had
* indexed them as a single term in a single field.
*
* The query works as follows:
*
*
* - Given a list of fields and weights, it pretends there is a synthetic combined field where
* all terms have been indexed. It computes new term and collection statistics for this
* combined field.
*
- It uses a disjunction iterator and {@link IndexSearcher#getSimilarity} to score documents.
*
*
* In order for a similarity to be compatible, {@link Similarity#computeNorm} must be additive:
* the norm of the combined field is the sum of norms for each individual field. The norms must also
* be encoded using {@link SmallFloat#intToByte4}. These requirements hold for all similarities that
* compute norms the same way as {@link SimilarityBase#computeNorm}, which includes {@link
* BM25Similarity} and {@link DFRSimilarity}. Per-field similarities are not supported.
*
*
The query also requires that either all fields or no fields have norms enabled. Having only
* some fields with norms enabled can result in errors.
*
*
The scoring is based on BM25F's simple formula described in:
* http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf. This query implements the
* same approach but allows other similarities besides {@link
* org.apache.lucene.search.similarities.BM25Similarity}.
*
*/
public final class XCombinedFieldQuery extends Query implements Accountable {
private static final long BASE_RAM_BYTES =
RamUsageEstimator.shallowSizeOfInstance(XCombinedFieldQuery.class);
/** A builder for {@link XCombinedFieldQuery}. */
public static class Builder {
private final Map fieldAndWeights = new HashMap<>();
private final Set termsSet = new HashSet<>();
/**
* Adds a field to this builder.
*
* @param field The field name.
*/
public Builder addField(String field) {
return addField(field, 1f);
}
/**
* Adds a field to this builder.
*
* @param field The field name.
* @param weight The weight associated to this field.
*/
public Builder addField(String field, float weight) {
if (weight < 1) {
throw new IllegalArgumentException("weight must be greater or equal to 1");
}
fieldAndWeights.put(field, new FieldAndWeight(field, weight));
return this;
}
/** Adds a term to this builder. */
public Builder addTerm(BytesRef term) {
if (termsSet.size() > BooleanQuery.getMaxClauseCount()) {
throw new BooleanQuery.TooManyClauses();
}
termsSet.add(term);
return this;
}
/** Builds the {@link XCombinedFieldQuery}. */
public XCombinedFieldQuery build() {
int size = fieldAndWeights.size() * termsSet.size();
if (size > BooleanQuery.getMaxClauseCount()) {
throw new BooleanQuery.TooManyClauses();
}
BytesRef[] terms = termsSet.toArray(new BytesRef[0]);
return new XCombinedFieldQuery(new TreeMap<>(fieldAndWeights), terms);
}
}
static class FieldAndWeight {
final String field;
final float weight;
FieldAndWeight(String field, float weight) {
this.field = field;
this.weight = weight;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
FieldAndWeight that = (FieldAndWeight) o;
return Float.compare(that.weight, weight) == 0 && Objects.equals(field, that.field);
}
@Override
public int hashCode() {
return Objects.hash(field, weight);
}
}
// sorted map for fields.
private final TreeMap fieldAndWeights;
// array of terms, sorted.
private final BytesRef terms[];
// array of terms per field, sorted
private final Term fieldTerms[];
private final long ramBytesUsed;
private XCombinedFieldQuery(TreeMap fieldAndWeights, BytesRef[] terms) {
this.fieldAndWeights = fieldAndWeights;
this.terms = terms;
int numFieldTerms = fieldAndWeights.size() * terms.length;
if (numFieldTerms > BooleanQuery.getMaxClauseCount()) {
throw new BooleanQuery.TooManyClauses();
}
this.fieldTerms = new Term[numFieldTerms];
Arrays.sort(terms);
int pos = 0;
for (String field : fieldAndWeights.keySet()) {
for (BytesRef term : terms) {
fieldTerms[pos++] = new Term(field, term);
}
}
this.ramBytesUsed =
BASE_RAM_BYTES
+ RamUsageEstimator.sizeOfObject(fieldAndWeights)
+ RamUsageEstimator.sizeOfObject(fieldTerms)
+ RamUsageEstimator.sizeOfObject(terms);
}
public List getTerms() {
return Collections.unmodifiableList(Arrays.asList(fieldTerms));
}
@Override
public String toString(String field) {
StringBuilder builder = new StringBuilder("CombinedFieldQuery((");
int pos = 0;
for (FieldAndWeight fieldWeight : fieldAndWeights.values()) {
if (pos++ != 0) {
builder.append(" ");
}
builder.append(fieldWeight.field);
if (fieldWeight.weight != 1f) {
builder.append("^");
builder.append(fieldWeight.weight);
}
}
builder.append(")(");
pos = 0;
for (BytesRef term : terms) {
if (pos++ != 0) {
builder.append(" ");
}
builder.append(term.utf8ToString());
}
builder.append("))");
return builder.toString();
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (sameClassAs(o) == false) return false;
XCombinedFieldQuery that = (XCombinedFieldQuery) o;
return Objects.equals(fieldAndWeights, that.fieldAndWeights) && Arrays.equals(terms, that.terms);
}
@Override
public int hashCode() {
int result = classHash();
result = 31 * result + Objects.hash(fieldAndWeights);
result = 31 * result + Arrays.hashCode(terms);
return result;
}
@Override
public long ramBytesUsed() {
return ramBytesUsed;
}
@Override
public Query rewrite(IndexReader reader) throws IOException {
// optimize zero and single field cases
if (terms.length == 0) {
return new BooleanQuery.Builder().build();
}
return this;
}
@Override
public void visit(QueryVisitor visitor) {
Term[] selectedTerms =
Arrays.stream(fieldTerms).filter(t -> visitor.acceptField(t.field())).toArray(Term[]::new);
if (selectedTerms.length > 0) {
QueryVisitor v = visitor.getSubVisitor(BooleanClause.Occur.SHOULD, this);
v.consumeTerms(this, selectedTerms);
}
}
private BooleanQuery rewriteToBoolean() {
// rewrite to a simple disjunction if the score is not needed.
BooleanQuery.Builder bq = new BooleanQuery.Builder();
for (Term term : fieldTerms) {
bq.add(new TermQuery(term), BooleanClause.Occur.SHOULD);
}
return bq.build();
}
@Override
public Weight createWeight(IndexSearcher searcher, ScoreMode scoreMode, float boost)
throws IOException {
validateConsistentNorms(searcher.getIndexReader());
if (scoreMode.needsScores()) {
return new CombinedFieldWeight(this, searcher, scoreMode, boost);
} else {
// rewrite to a simple disjunction if the score is not needed.
Query bq = rewriteToBoolean();
return searcher.rewrite(bq).createWeight(searcher, ScoreMode.COMPLETE_NO_SCORES, boost);
}
}
private void validateConsistentNorms(IndexReader reader) {
boolean allFieldsHaveNorms = true;
boolean noFieldsHaveNorms = true;
for (LeafReaderContext context : reader.leaves()) {
FieldInfos fieldInfos = context.reader().getFieldInfos();
for (String field : fieldAndWeights.keySet()) {
FieldInfo fieldInfo = fieldInfos.fieldInfo(field);
if (fieldInfo != null) {
allFieldsHaveNorms &= fieldInfo.hasNorms();
noFieldsHaveNorms &= fieldInfo.omitsNorms();
}
}
}
if (allFieldsHaveNorms == false && noFieldsHaveNorms == false) {
throw new IllegalArgumentException(
getClass().getSimpleName()
+ " requires norms to be consistent across fields: some fields cannot "
+ " have norms enabled, while others have norms disabled");
}
}
class CombinedFieldWeight extends Weight {
private final IndexSearcher searcher;
private final TermStates termStates[];
private final Similarity.SimScorer simWeight;
CombinedFieldWeight(Query query, IndexSearcher searcher, ScoreMode scoreMode, float boost)
throws IOException {
super(query);
assert scoreMode.needsScores();
this.searcher = searcher;
long docFreq = 0;
long totalTermFreq = 0;
termStates = new TermStates[fieldTerms.length];
for (int i = 0; i < termStates.length; i++) {
FieldAndWeight field = fieldAndWeights.get(fieldTerms[i].field());
TermStates ts = TermStates.build(searcher.getTopReaderContext(), fieldTerms[i], true);
termStates[i] = ts;
if (ts.docFreq() > 0) {
TermStatistics termStats =
searcher.termStatistics(fieldTerms[i], ts.docFreq(), ts.totalTermFreq());
docFreq = Math.max(termStats.docFreq(), docFreq);
totalTermFreq += (double) field.weight * termStats.totalTermFreq();
}
}
if (docFreq > 0) {
CollectionStatistics pseudoCollectionStats = mergeCollectionStatistics(searcher);
TermStatistics pseudoTermStatistics =
new TermStatistics(new BytesRef("pseudo_term"), docFreq, Math.max(1, totalTermFreq));
this.simWeight =
searcher.getSimilarity().scorer(boost, pseudoCollectionStats, pseudoTermStatistics);
} else {
this.simWeight = null;
}
}
private CollectionStatistics mergeCollectionStatistics(IndexSearcher searcher)
throws IOException {
long maxDoc = searcher.getIndexReader().maxDoc();
long docCount = 0;
long sumTotalTermFreq = 0;
long sumDocFreq = 0;
for (FieldAndWeight fieldWeight : fieldAndWeights.values()) {
CollectionStatistics collectionStats = searcher.collectionStatistics(fieldWeight.field);
if (collectionStats != null) {
docCount = Math.max(collectionStats.docCount(), docCount);
sumDocFreq = Math.max(collectionStats.sumDocFreq(), sumDocFreq);
sumTotalTermFreq += (double) fieldWeight.weight * collectionStats.sumTotalTermFreq();
}
}
return new CollectionStatistics(
"pseudo_field", maxDoc, docCount, sumTotalTermFreq, sumDocFreq);
}
@Override
public void extractTerms(Set termSet) {
termSet.addAll(Arrays.asList(fieldTerms));
}
@Override
public Matches matches(LeafReaderContext context, int doc) throws IOException {
Weight weight =
searcher.rewrite(rewriteToBoolean()).createWeight(searcher, ScoreMode.COMPLETE, 1f);
return weight.matches(context, doc);
}
@Override
public Explanation explain(LeafReaderContext context, int doc) throws IOException {
Scorer scorer = scorer(context);
if (scorer != null) {
int newDoc = scorer.iterator().advance(doc);
if (newDoc == doc) {
final float freq;
if (scorer instanceof CombinedFieldScorer) {
freq = ((CombinedFieldScorer) scorer).freq();
} else {
assert scorer instanceof TermScorer;
freq = ((TermScorer) scorer).freq();
}
final XMultiNormsLeafSimScorer docScorer =
new XMultiNormsLeafSimScorer(
simWeight, context.reader(), fieldAndWeights.values(), true);
Explanation freqExplanation = Explanation.match(freq, "termFreq=" + freq);
Explanation scoreExplanation = docScorer.explain(doc, freqExplanation);
return Explanation.match(
scoreExplanation.getValue(),
"weight(" + getQuery() + " in " + doc + "), result of:",
scoreExplanation);
}
}
return Explanation.noMatch("no matching term");
}
@Override
public Scorer scorer(LeafReaderContext context) throws IOException {
List iterators = new ArrayList<>();
List fields = new ArrayList<>();
for (int i = 0; i < fieldTerms.length; i++) {
TermState state = termStates[i].get(context);
if (state != null) {
TermsEnum termsEnum = context.reader().terms(fieldTerms[i].field()).iterator();
termsEnum.seekExact(fieldTerms[i].bytes(), state);
PostingsEnum postingsEnum = termsEnum.postings(null, PostingsEnum.FREQS);
iterators.add(postingsEnum);
fields.add(fieldAndWeights.get(fieldTerms[i].field()));
}
}
if (iterators.isEmpty()) {
return null;
}
// we must optimize this case (term not in segment), disjunctions require >= 2 subs
if (iterators.size() == 1) {
final LeafSimScorer scoringSimScorer =
new LeafSimScorer(simWeight, context.reader(), fields.get(0).field, true);
return new TermScorer(this, iterators.get(0), scoringSimScorer);
}
final XMultiNormsLeafSimScorer scoringSimScorer =
new XMultiNormsLeafSimScorer(simWeight, context.reader(), fields, true);
LeafSimScorer nonScoringSimScorer =
new LeafSimScorer(simWeight, context.reader(), "pseudo_field", false);
// we use termscorers + disjunction as an impl detail
DisiPriorityQueue queue = new DisiPriorityQueue(iterators.size());
for (int i = 0; i < iterators.size(); i++) {
float weight = fields.get(i).weight;
queue.add(
new WeightedDisiWrapper(
new TermScorer(this, iterators.get(i), nonScoringSimScorer), weight));
}
// Even though it is called approximation, it is accurate since none of
// the sub iterators are two-phase iterators.
DocIdSetIterator iterator = new DisjunctionDISIApproximation(queue);
return new CombinedFieldScorer(this, queue, iterator, scoringSimScorer);
}
@Override
public boolean isCacheable(LeafReaderContext ctx) {
return false;
}
}
private static class WeightedDisiWrapper extends DisiWrapper {
final float weight;
WeightedDisiWrapper(Scorer scorer, float weight) {
super(scorer);
this.weight = weight;
}
float freq() throws IOException {
return weight * ((PostingsEnum) iterator).freq();
}
}
private static class CombinedFieldScorer extends Scorer {
private final DisiPriorityQueue queue;
private final DocIdSetIterator iterator;
private final XMultiNormsLeafSimScorer simScorer;
CombinedFieldScorer(
Weight weight,
DisiPriorityQueue queue,
DocIdSetIterator iterator,
XMultiNormsLeafSimScorer simScorer) {
super(weight);
this.queue = queue;
this.iterator = iterator;
this.simScorer = simScorer;
}
@Override
public int docID() {
return iterator.docID();
}
float freq() throws IOException {
DisiWrapper w = queue.topList();
float freq = ((WeightedDisiWrapper) w).freq();
for (w = w.next; w != null; w = w.next) {
freq += ((WeightedDisiWrapper) w).freq();
if (freq < 0) { // overflow
return Integer.MAX_VALUE;
}
}
return freq;
}
@Override
public float score() throws IOException {
return simScorer.score(iterator.docID(), freq());
}
@Override
public DocIdSetIterator iterator() {
return iterator;
}
@Override
public float getMaxScore(int upTo) throws IOException {
return Float.POSITIVE_INFINITY;
}
}
}