org.elasticsearch.search.suggest.phrase.PhraseSuggestionBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch Show documentation
Show all versions of elasticsearch Show documentation
Elasticsearch subproject :server
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0 and the Server Side Public License, v 1; you may not use this file except
* in compliance with, at your election, the Elastic License 2.0 or the Server
* Side Public License, v 1.
*/
package org.elasticsearch.search.suggest.phrase;
import org.apache.lucene.analysis.Analyzer;
import org.elasticsearch.ElasticsearchParseException;
import org.elasticsearch.TransportVersion;
import org.elasticsearch.TransportVersions;
import org.elasticsearch.common.ParsingException;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.common.lucene.BytesRefs;
import org.elasticsearch.index.analysis.AnalyzerComponentsProvider;
import org.elasticsearch.index.analysis.IndexAnalyzers;
import org.elasticsearch.index.analysis.NamedAnalyzer;
import org.elasticsearch.index.analysis.ShingleTokenFilterFactory;
import org.elasticsearch.index.analysis.TokenFilterFactory;
import org.elasticsearch.index.query.SearchExecutionContext;
import org.elasticsearch.script.Script;
import org.elasticsearch.script.ScriptType;
import org.elasticsearch.script.TemplateScript;
import org.elasticsearch.search.suggest.SuggestionBuilder;
import org.elasticsearch.search.suggest.SuggestionSearchContext.SuggestionContext;
import org.elasticsearch.search.suggest.phrase.PhraseSuggestionContext.DirectCandidateGenerator;
import org.elasticsearch.xcontent.ParseField;
import org.elasticsearch.xcontent.ToXContentObject;
import org.elasticsearch.xcontent.XContentBuilder;
import org.elasticsearch.xcontent.XContentParser;
import org.elasticsearch.xcontent.XContentParser.Token;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Objects;
import java.util.Set;
/**
* Defines the actual suggest command for phrase suggestions ( {@code phrase}).
*/
public class PhraseSuggestionBuilder extends SuggestionBuilder {
public static final String SUGGESTION_NAME = "phrase";
protected static final ParseField MAXERRORS_FIELD = new ParseField("max_errors");
protected static final ParseField RWE_LIKELIHOOD_FIELD = new ParseField("real_word_error_likelihood");
protected static final ParseField SEPARATOR_FIELD = new ParseField("separator");
protected static final ParseField CONFIDENCE_FIELD = new ParseField("confidence");
protected static final ParseField GRAMSIZE_FIELD = new ParseField("gram_size");
protected static final ParseField SMOOTHING_MODEL_FIELD = new ParseField("smoothing");
protected static final ParseField FORCE_UNIGRAM_FIELD = new ParseField("force_unigrams");
protected static final ParseField TOKEN_LIMIT_FIELD = new ParseField("token_limit");
protected static final ParseField HIGHLIGHT_FIELD = new ParseField("highlight");
protected static final ParseField PRE_TAG_FIELD = new ParseField("pre_tag");
protected static final ParseField POST_TAG_FIELD = new ParseField("post_tag");
protected static final ParseField COLLATE_FIELD = new ParseField("collate");
protected static final ParseField COLLATE_QUERY_FIELD = new ParseField("query");
protected static final ParseField COLLATE_QUERY_PARAMS = new ParseField("params");
protected static final ParseField COLLATE_QUERY_PRUNE = new ParseField("prune");
private float maxErrors = PhraseSuggestionContext.DEFAULT_MAX_ERRORS;
private String separator = PhraseSuggestionContext.DEFAULT_SEPARATOR;
private float realWordErrorLikelihood = PhraseSuggestionContext.DEFAULT_RWE_ERRORLIKELIHOOD;
private float confidence = PhraseSuggestionContext.DEFAULT_CONFIDENCE;
// gramSize needs to be optional although there is a default, if unset parser try to detect and use shingle size
private Integer gramSize;
private boolean forceUnigrams = PhraseSuggestionContext.DEFAULT_REQUIRE_UNIGRAM;
private int tokenLimit = NoisyChannelSpellChecker.DEFAULT_TOKEN_LIMIT;
private String preTag;
private String postTag;
private Script collateQuery;
private Map collateParams;
private boolean collatePrune = PhraseSuggestionContext.DEFAULT_COLLATE_PRUNE;
private SmoothingModel model;
private final Map> generators = new HashMap<>();
public PhraseSuggestionBuilder(String field) {
super(field);
}
/**
* internal copy constructor that copies over all class fields except for the field which is
* set to the one provided in the first argument
*/
private PhraseSuggestionBuilder(String fieldname, PhraseSuggestionBuilder in) {
super(fieldname, in);
maxErrors = in.maxErrors;
separator = in.separator;
realWordErrorLikelihood = in.realWordErrorLikelihood;
confidence = in.confidence;
gramSize = in.gramSize;
forceUnigrams = in.forceUnigrams;
tokenLimit = in.tokenLimit;
preTag = in.preTag;
postTag = in.postTag;
collateQuery = in.collateQuery;
collateParams = in.collateParams;
collatePrune = in.collatePrune;
model = in.model;
generators.putAll(in.generators);
}
/**
* Read from a stream.
*/
public PhraseSuggestionBuilder(StreamInput in) throws IOException {
super(in);
maxErrors = in.readFloat();
realWordErrorLikelihood = in.readFloat();
confidence = in.readFloat();
gramSize = in.readOptionalVInt();
model = in.readOptionalNamedWriteable(SmoothingModel.class);
forceUnigrams = in.readBoolean();
tokenLimit = in.readVInt();
preTag = in.readOptionalString();
postTag = in.readOptionalString();
separator = in.readString();
if (in.readBoolean()) {
collateQuery = new Script(in);
}
collateParams = in.readGenericMap();
collatePrune = in.readOptionalBoolean();
int generatorsEntries = in.readVInt();
for (int i = 0; i < generatorsEntries; i++) {
String type = in.readString();
int numberOfGenerators = in.readVInt();
List generatorsList = new ArrayList<>(numberOfGenerators);
for (int g = 0; g < numberOfGenerators; g++) {
DirectCandidateGeneratorBuilder generator = new DirectCandidateGeneratorBuilder(in);
generatorsList.add(generator);
}
generators.put(type, generatorsList);
}
}
@Override
public void doWriteTo(StreamOutput out) throws IOException {
out.writeFloat(maxErrors);
out.writeFloat(realWordErrorLikelihood);
out.writeFloat(confidence);
out.writeOptionalVInt(gramSize);
out.writeOptionalNamedWriteable(model);
out.writeBoolean(forceUnigrams);
out.writeVInt(tokenLimit);
out.writeOptionalString(preTag);
out.writeOptionalString(postTag);
out.writeString(separator);
if (collateQuery != null) {
out.writeBoolean(true);
collateQuery.writeTo(out);
} else {
out.writeBoolean(false);
}
out.writeMapWithConsistentOrder(collateParams);
out.writeOptionalBoolean(collatePrune);
out.writeMap(this.generators, StreamOutput::writeCollection);
}
/**
* Sets the gram size for the n-gram model used for this suggester. The
* default value is {@code 1} corresponding to {@code unigrams}. Use
* {@code 2} for {@code bigrams} and {@code 3} for {@code trigrams}.
*/
public PhraseSuggestionBuilder gramSize(int gramSize) {
if (gramSize < 1) {
throw new IllegalArgumentException("gramSize must be >= 1");
}
this.gramSize = gramSize;
return this;
}
/**
* get the {@link #gramSize(int)} parameter
*/
public Integer gramSize() {
return this.gramSize;
}
/**
* Sets the maximum percentage of the terms that at most considered to be
* misspellings in order to form a correction. This method accepts a float
* value in the range [0..1) as a fraction of the actual query terms a
* number {@code >=1} as an absolute number of query terms.
*
* The default is set to {@code 1.0} which corresponds to that only
* corrections with at most 1 misspelled term are returned.
*/
public PhraseSuggestionBuilder maxErrors(float maxErrors) {
if (maxErrors <= 0.0) {
throw new IllegalArgumentException("max_error must be > 0.0");
}
this.maxErrors = maxErrors;
return this;
}
/**
* get the maxErrors setting
*/
public Float maxErrors() {
return this.maxErrors;
}
/**
* Sets the separator that is used to separate terms in the bigram field. If
* not set the whitespace character is used as a separator.
*/
public PhraseSuggestionBuilder separator(String separator) {
Objects.requireNonNull(separator, "separator cannot be set to null");
this.separator = separator;
return this;
}
/**
* get the separator that is used to separate terms in the bigram field.
*/
public String separator() {
return this.separator;
}
/**
* Sets the likelihood of a term being a misspelled even if the term exists
* in the dictionary. The default it {@code 0.95} corresponding to 5% or
* the real words are misspelled.
*/
public PhraseSuggestionBuilder realWordErrorLikelihood(float realWordErrorLikelihood) {
if (realWordErrorLikelihood <= 0.0) {
throw new IllegalArgumentException("real_word_error_likelihood must be > 0.0");
}
this.realWordErrorLikelihood = realWordErrorLikelihood;
return this;
}
/**
* get the {@link #realWordErrorLikelihood(float)} parameter
*/
public Float realWordErrorLikelihood() {
return this.realWordErrorLikelihood;
}
/**
* Sets the confidence level for this suggester. The confidence level
* defines a factor applied to the input phrases score which is used as a
* threshold for other suggest candidates. Only candidates that score higher
* than the threshold will be included in the result. For instance a
* confidence level of {@code 1.0} will only return suggestions that score
* higher than the input phrase. If set to {@code 0.0} the top N candidates
* are returned. The default is {@code 1.0}
*/
public PhraseSuggestionBuilder confidence(float confidence) {
if (confidence < 0.0) {
throw new IllegalArgumentException("confidence must be >= 0.0");
}
this.confidence = confidence;
return this;
}
/**
* get the {@link #confidence()} parameter
*/
public Float confidence() {
return this.confidence;
}
/**
* Adds a {@link CandidateGenerator} to this suggester. The
* {@link CandidateGenerator} is used to draw candidates for each individual
* phrase term before the candidates are scored.
*/
public PhraseSuggestionBuilder addCandidateGenerator(CandidateGenerator generator) {
this.generators.computeIfAbsent(generator.getType(), k -> new ArrayList<>()).add(generator);
return this;
}
/**
* Clear the candidate generators.
*/
public PhraseSuggestionBuilder clearCandidateGenerators() {
this.generators.clear();
return this;
}
/**
* get the candidate generators.
*/
Map> getCandidateGenerators() {
return this.generators;
}
/**
* If set to true
the phrase suggester will fail if the analyzer only
* produces ngrams. the default it true
.
*/
public PhraseSuggestionBuilder forceUnigrams(boolean forceUnigrams) {
this.forceUnigrams = forceUnigrams;
return this;
}
/**
* get the setting for {@link #forceUnigrams()}
*/
public Boolean forceUnigrams() {
return this.forceUnigrams;
}
/**
* Sets an explicit smoothing model used for this suggester. The default is
* {@link StupidBackoff}.
*/
public PhraseSuggestionBuilder smoothingModel(SmoothingModel model) {
this.model = model;
return this;
}
/**
* Gets the {@link SmoothingModel}
*/
public SmoothingModel smoothingModel() {
return this.model;
}
public PhraseSuggestionBuilder tokenLimit(int tokenLimit) {
if (tokenLimit <= 0) {
throw new IllegalArgumentException("token_limit must be >= 1");
}
this.tokenLimit = tokenLimit;
return this;
}
/**
* get the {@link #tokenLimit(int)} parameter
*/
public Integer tokenLimit() {
return this.tokenLimit;
}
/**
* Setup highlighting for suggestions. If this is called a highlight field
* is returned with suggestions wrapping changed tokens with preTag and postTag.
*/
public PhraseSuggestionBuilder highlight(String preTag, String postTag) {
if ((preTag == null) != (postTag == null)) {
throw new IllegalArgumentException("Pre and post tag must both be null or both not be null.");
}
this.preTag = preTag;
this.postTag = postTag;
return this;
}
/**
* get the pre-tag for the highlighter set with {@link #highlight(String, String)}
*/
public String preTag() {
return this.preTag;
}
/**
* get the post-tag for the highlighter set with {@link #highlight(String, String)}
*/
public String postTag() {
return this.postTag;
}
/**
* Sets a query used for filtering out suggested phrases (collation).
*/
public PhraseSuggestionBuilder collateQuery(String collateQuery) {
this.collateQuery = new Script(ScriptType.INLINE, "mustache", collateQuery, Collections.emptyMap());
return this;
}
/**
* Sets a query used for filtering out suggested phrases (collation).
*/
public PhraseSuggestionBuilder collateQuery(Script collateQueryTemplate) {
this.collateQuery = collateQueryTemplate;
return this;
}
/**
* gets the query used for filtering out suggested phrases (collation).
*/
public Script collateQuery() {
return this.collateQuery;
}
/**
* Adds additional parameters for collate scripts. Previously added parameters on the
* same builder will be overwritten.
*/
public PhraseSuggestionBuilder collateParams(Map collateParams) {
Objects.requireNonNull(collateParams, "collate parameters cannot be null.");
this.collateParams = new HashMap<>(collateParams);
return this;
}
/**
* gets additional params for collate script
*/
public Map collateParams() {
return this.collateParams;
}
/**
* Sets whether to prune suggestions after collation
*/
public PhraseSuggestionBuilder collatePrune(boolean collatePrune) {
this.collatePrune = collatePrune;
return this;
}
/**
* Gets whether to prune suggestions after collation
*/
public Boolean collatePrune() {
return this.collatePrune;
}
@Override
public XContentBuilder innerToXContent(XContentBuilder builder, Params params) throws IOException {
builder.field(RWE_LIKELIHOOD_FIELD.getPreferredName(), realWordErrorLikelihood);
builder.field(CONFIDENCE_FIELD.getPreferredName(), confidence);
builder.field(SEPARATOR_FIELD.getPreferredName(), separator);
builder.field(MAXERRORS_FIELD.getPreferredName(), maxErrors);
if (gramSize != null) {
builder.field(GRAMSIZE_FIELD.getPreferredName(), gramSize);
}
builder.field(FORCE_UNIGRAM_FIELD.getPreferredName(), forceUnigrams);
builder.field(TOKEN_LIMIT_FIELD.getPreferredName(), tokenLimit);
if (generators.isEmpty() == false) {
Set>> entrySet = generators.entrySet();
for (Entry> entry : entrySet) {
builder.startArray(entry.getKey());
for (CandidateGenerator generator : entry.getValue()) {
generator.toXContent(builder, params);
}
builder.endArray();
}
}
if (model != null) {
builder.startObject(SMOOTHING_MODEL_FIELD.getPreferredName());
model.toXContent(builder, params);
builder.endObject();
}
if (preTag != null) {
builder.startObject(HIGHLIGHT_FIELD.getPreferredName());
builder.field(PRE_TAG_FIELD.getPreferredName(), preTag);
builder.field(POST_TAG_FIELD.getPreferredName(), postTag);
builder.endObject();
}
if (collateQuery != null) {
builder.startObject(COLLATE_FIELD.getPreferredName());
builder.field(COLLATE_QUERY_FIELD.getPreferredName(), collateQuery);
if (collateParams != null) {
builder.field(COLLATE_QUERY_PARAMS.getPreferredName(), collateParams);
}
builder.field(COLLATE_QUERY_PRUNE.getPreferredName(), collatePrune);
builder.endObject();
}
return builder;
}
public static PhraseSuggestionBuilder fromXContent(XContentParser parser) throws IOException {
PhraseSuggestionBuilder tmpSuggestion = new PhraseSuggestionBuilder("_na_");
XContentParser.Token token;
String currentFieldName = null;
String fieldname = null;
while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) {
if (token == XContentParser.Token.FIELD_NAME) {
currentFieldName = parser.currentName();
} else if (token.isValue()) {
if (SuggestionBuilder.ANALYZER_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.analyzer(parser.text());
} else if (SuggestionBuilder.FIELDNAME_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
fieldname = parser.text();
} else if (SuggestionBuilder.SIZE_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.size(parser.intValue());
} else if (SuggestionBuilder.SHARDSIZE_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.shardSize(parser.intValue());
} else if (PhraseSuggestionBuilder.RWE_LIKELIHOOD_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.realWordErrorLikelihood(parser.floatValue());
} else if (PhraseSuggestionBuilder.CONFIDENCE_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.confidence(parser.floatValue());
} else if (PhraseSuggestionBuilder.SEPARATOR_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.separator(parser.text());
} else if (PhraseSuggestionBuilder.MAXERRORS_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.maxErrors(parser.floatValue());
} else if (PhraseSuggestionBuilder.GRAMSIZE_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.gramSize(parser.intValue());
} else if (PhraseSuggestionBuilder.FORCE_UNIGRAM_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.forceUnigrams(parser.booleanValue());
} else if (PhraseSuggestionBuilder.TOKEN_LIMIT_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.tokenLimit(parser.intValue());
} else {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase] doesn't support field [" + currentFieldName + "]"
);
}
} else if (token == Token.START_ARRAY) {
if (DirectCandidateGeneratorBuilder.DIRECT_GENERATOR_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
// for now we only have a single type of generators
while (parser.nextToken() == Token.START_OBJECT) {
tmpSuggestion.addCandidateGenerator(DirectCandidateGeneratorBuilder.PARSER.apply(parser, null));
}
} else {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase] doesn't support array field [" + currentFieldName + "]"
);
}
} else if (token == Token.START_OBJECT) {
if (PhraseSuggestionBuilder.SMOOTHING_MODEL_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
ensureNoSmoothing(tmpSuggestion);
tmpSuggestion.smoothingModel(SmoothingModel.fromXContent(parser));
} else if (PhraseSuggestionBuilder.HIGHLIGHT_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
String preTag = null;
String postTag = null;
while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) {
if (token == XContentParser.Token.FIELD_NAME) {
currentFieldName = parser.currentName();
} else if (token.isValue()) {
if (PhraseSuggestionBuilder.PRE_TAG_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
preTag = parser.text();
} else if (PhraseSuggestionBuilder.POST_TAG_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
postTag = parser.text();
} else {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase][highlight] doesn't support field [" + currentFieldName + "]"
);
}
}
}
tmpSuggestion.highlight(preTag, postTag);
} else if (PhraseSuggestionBuilder.COLLATE_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) {
if (token == XContentParser.Token.FIELD_NAME) {
currentFieldName = parser.currentName();
} else if (PhraseSuggestionBuilder.COLLATE_QUERY_FIELD.match(currentFieldName, parser.getDeprecationHandler())) {
if (tmpSuggestion.collateQuery() != null) {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase][collate] query already set, doesn't support additional [" + currentFieldName + "]"
);
}
Script template = Script.parse(parser, Script.DEFAULT_TEMPLATE_LANG);
tmpSuggestion.collateQuery(template);
} else if (PhraseSuggestionBuilder.COLLATE_QUERY_PARAMS.match(currentFieldName, parser.getDeprecationHandler())) {
tmpSuggestion.collateParams(parser.map());
} else if (PhraseSuggestionBuilder.COLLATE_QUERY_PRUNE.match(currentFieldName, parser.getDeprecationHandler())) {
if (parser.isBooleanValue()) {
tmpSuggestion.collatePrune(parser.booleanValue());
} else {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase][collate] prune must be either 'true' or 'false'"
);
}
} else {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase][collate] doesn't support field [" + currentFieldName + "]"
);
}
}
} else {
throw new ParsingException(
parser.getTokenLocation(),
"suggester[phrase] doesn't support array field [" + currentFieldName + "]"
);
}
} else {
throw new ParsingException(parser.getTokenLocation(), "suggester[phrase] doesn't support field [" + currentFieldName + "]");
}
}
// now we should have field name, check and copy fields over to the suggestion builder we return
if (fieldname == null) {
throw new ElasticsearchParseException("the required field option [" + FIELDNAME_FIELD.getPreferredName() + "] is missing");
}
return new PhraseSuggestionBuilder(fieldname, tmpSuggestion);
}
@Override
public SuggestionContext build(SearchExecutionContext context) throws IOException {
PhraseSuggestionContext suggestionContext = new PhraseSuggestionContext(context);
// copy over common settings to each suggestion builder
populateCommonFields(context, suggestionContext);
suggestionContext.setSeparator(BytesRefs.toBytesRef(this.separator));
suggestionContext.setRealWordErrorLikelihood(this.realWordErrorLikelihood);
suggestionContext.setConfidence(this.confidence);
suggestionContext.setMaxErrors(this.maxErrors);
suggestionContext.setRequireUnigram(this.forceUnigrams);
suggestionContext.setTokenLimit(this.tokenLimit);
suggestionContext.setPreTag(BytesRefs.toBytesRef(this.preTag));
suggestionContext.setPostTag(BytesRefs.toBytesRef(this.postTag));
if (this.gramSize != null) {
suggestionContext.setGramSize(this.gramSize);
}
for (List candidateGenerators : this.generators.values()) {
for (CandidateGenerator candidateGenerator : candidateGenerators) {
suggestionContext.addGenerator(candidateGenerator.build(context.getIndexAnalyzers()));
}
}
if (this.model != null) {
suggestionContext.setModel(this.model.buildWordScorerFactory());
}
if (this.collateQuery != null) {
TemplateScript.Factory scriptFactory = context.compile(this.collateQuery, TemplateScript.CONTEXT);
suggestionContext.setCollateQueryScript(scriptFactory);
if (this.collateParams != null) {
suggestionContext.setCollateScriptParams(this.collateParams);
}
suggestionContext.setCollatePrune(this.collatePrune);
}
if (this.gramSize == null || suggestionContext.generators().isEmpty()) {
final ShingleTokenFilterFactory.Factory shingleFilterFactory = getShingleFilterFactory(suggestionContext.getAnalyzer());
if (this.gramSize == null) {
// try to detect the shingle size
if (shingleFilterFactory != null) {
suggestionContext.setGramSize(shingleFilterFactory.getMaxShingleSize());
if (suggestionContext.getAnalyzer() == null
&& shingleFilterFactory.getMinShingleSize() > 1
&& shingleFilterFactory.getOutputUnigrams() == false) {
throw new IllegalArgumentException(
"The default analyzer for field: ["
+ suggestionContext.getField()
+ "] doesn't emit unigrams. If this is intentional try to set the analyzer explicitly"
);
}
}
}
if (suggestionContext.generators().isEmpty()) {
if (shingleFilterFactory != null
&& shingleFilterFactory.getMinShingleSize() > 1
&& shingleFilterFactory.getOutputUnigrams() == false
&& suggestionContext.getRequireUnigram()) {
throw new IllegalArgumentException(
"The default candidate generator for phrase suggest can't operate on field: ["
+ suggestionContext.getField()
+ "] since it doesn't emit unigrams. "
+ "If this is intentional try to set the candidate generator field explicitly"
);
}
// use a default generator on the same field
DirectCandidateGenerator generator = new DirectCandidateGenerator();
generator.setField(suggestionContext.getField());
suggestionContext.addGenerator(generator);
}
}
return suggestionContext;
}
private static ShingleTokenFilterFactory.Factory getShingleFilterFactory(Analyzer analyzer) {
if (analyzer instanceof NamedAnalyzer) {
analyzer = ((NamedAnalyzer) analyzer).analyzer();
}
if (analyzer instanceof AnalyzerComponentsProvider) {
final TokenFilterFactory[] tokenFilters = ((AnalyzerComponentsProvider) analyzer).getComponents().getTokenFilters();
for (TokenFilterFactory tokenFilterFactory : tokenFilters) {
if (tokenFilterFactory instanceof ShingleTokenFilterFactory) {
return ((ShingleTokenFilterFactory) tokenFilterFactory).getInnerFactory();
} else if (tokenFilterFactory instanceof ShingleTokenFilterFactory.Factory) {
return (ShingleTokenFilterFactory.Factory) tokenFilterFactory;
}
}
}
return null;
}
private static void ensureNoSmoothing(PhraseSuggestionBuilder suggestion) {
if (suggestion.smoothingModel() != null) {
throw new IllegalArgumentException("only one smoothing model supported");
}
}
@Override
public String getWriteableName() {
return SUGGESTION_NAME;
}
@Override
public TransportVersion getMinimalSupportedVersion() {
return TransportVersions.ZERO;
}
@Override
protected boolean doEquals(PhraseSuggestionBuilder other) {
return Objects.equals(maxErrors, other.maxErrors)
&& Objects.equals(separator, other.separator)
&& Objects.equals(realWordErrorLikelihood, other.realWordErrorLikelihood)
&& Objects.equals(confidence, other.confidence)
&& Objects.equals(generators, other.generators)
&& Objects.equals(gramSize, other.gramSize)
&& Objects.equals(model, other.model)
&& Objects.equals(forceUnigrams, other.forceUnigrams)
&& Objects.equals(tokenLimit, other.tokenLimit)
&& Objects.equals(preTag, other.preTag)
&& Objects.equals(postTag, other.postTag)
&& Objects.equals(collateQuery, other.collateQuery)
&& Objects.equals(collateParams, other.collateParams)
&& Objects.equals(collatePrune, other.collatePrune);
}
@Override
protected int doHashCode() {
return Objects.hash(
maxErrors,
separator,
realWordErrorLikelihood,
confidence,
generators,
gramSize,
model,
forceUnigrams,
tokenLimit,
preTag,
postTag,
collateQuery,
collateParams,
collatePrune
);
}
/**
* {@link CandidateGenerator} interface.
*/
public interface CandidateGenerator extends Writeable, ToXContentObject {
String getType();
PhraseSuggestionContext.DirectCandidateGenerator build(IndexAnalyzers indexAnalyzers) throws IOException;
}
}