org.elasticsearch.search.aggregations.metrics.ExtendedStatsAggregator Maven / Gradle / Ivy
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the "Elastic License
* 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side
* Public License v 1"; you may not use this file except in compliance with, at
* your election, the "Elastic License 2.0", the "GNU Affero General Public
* License v3.0 only", or the "Server Side Public License, v 1".
*/
package org.elasticsearch.search.aggregations.metrics;
import org.elasticsearch.common.util.BigArrays;
import org.elasticsearch.common.util.DoubleArray;
import org.elasticsearch.common.util.LongArray;
import org.elasticsearch.core.Releasables;
import org.elasticsearch.index.fielddata.NumericDoubleValues;
import org.elasticsearch.index.fielddata.SortedNumericDoubleValues;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.Aggregator;
import org.elasticsearch.search.aggregations.InternalAggregation;
import org.elasticsearch.search.aggregations.LeafBucketCollector;
import org.elasticsearch.search.aggregations.LeafBucketCollectorBase;
import org.elasticsearch.search.aggregations.support.AggregationContext;
import org.elasticsearch.search.aggregations.support.ValuesSourceConfig;
import org.elasticsearch.xcontent.ParseField;
import java.io.IOException;
import java.util.Map;
class ExtendedStatsAggregator extends NumericMetricsAggregator.MultiDoubleValue {
static final ParseField SIGMA_FIELD = new ParseField("sigma");
final DocValueFormat format;
final double sigma;
LongArray counts;
DoubleArray sums;
DoubleArray compensations;
DoubleArray mins;
DoubleArray maxes;
DoubleArray sumOfSqrs;
DoubleArray compensationOfSqrs;
ExtendedStatsAggregator(
String name,
ValuesSourceConfig config,
AggregationContext context,
Aggregator parent,
double sigma,
Map metadata
) throws IOException {
super(name, config, context, parent, metadata);
assert config.hasValues();
this.format = config.format();
this.sigma = sigma;
final BigArrays bigArrays = context.bigArrays();
counts = bigArrays.newLongArray(1, true);
sums = bigArrays.newDoubleArray(1, true);
compensations = bigArrays.newDoubleArray(1, true);
mins = bigArrays.newDoubleArray(1, false);
mins.fill(0, mins.size(), Double.POSITIVE_INFINITY);
maxes = bigArrays.newDoubleArray(1, false);
maxes.fill(0, maxes.size(), Double.NEGATIVE_INFINITY);
sumOfSqrs = bigArrays.newDoubleArray(1, true);
compensationOfSqrs = bigArrays.newDoubleArray(1, true);
}
@Override
protected LeafBucketCollector getLeafCollector(SortedNumericDoubleValues values, final LeafBucketCollector sub) {
final CompensatedSum compensatedSum = new CompensatedSum(0, 0);
final CompensatedSum compensatedSumOfSqr = new CompensatedSum(0, 0);
return new LeafBucketCollectorBase(sub, values) {
@Override
public void collect(int doc, long bucket) throws IOException {
if (values.advanceExact(doc)) {
maybeGrow(bucket);
final int valuesCount = values.docValueCount();
counts.increment(bucket, valuesCount);
double min = mins.get(bucket);
double max = maxes.get(bucket);
// Compute the sum and sum of squires for double values with Kahan summation algorithm
// which is more accurate than naive summation.
compensatedSum.reset(sums.get(bucket), compensations.get(bucket));
compensatedSumOfSqr.reset(sumOfSqrs.get(bucket), compensationOfSqrs.get(bucket));
for (int i = 0; i < valuesCount; i++) {
double value = values.nextValue();
compensatedSum.add(value);
compensatedSumOfSqr.add(value * value);
min = Math.min(min, value);
max = Math.max(max, value);
}
sums.set(bucket, compensatedSum.value());
compensations.set(bucket, compensatedSum.delta());
sumOfSqrs.set(bucket, compensatedSumOfSqr.value());
compensationOfSqrs.set(bucket, compensatedSumOfSqr.delta());
mins.set(bucket, min);
maxes.set(bucket, max);
}
}
};
}
@Override
protected LeafBucketCollector getLeafCollector(NumericDoubleValues values, final LeafBucketCollector sub) {
final CompensatedSum compensatedSum = new CompensatedSum(0, 0);
return new LeafBucketCollectorBase(sub, values) {
@Override
public void collect(int doc, long bucket) throws IOException {
if (values.advanceExact(doc)) {
maybeGrow(bucket);
final double value = values.doubleValue();
counts.increment(bucket, 1L);
// Compute the sum and sum of squires for double values with Kahan summation algorithm
// which is more accurate than naive summation.
compensatedSum.reset(sums.get(bucket), compensations.get(bucket));
compensatedSum.add(value);
sums.set(bucket, compensatedSum.value());
compensations.set(bucket, compensatedSum.delta());
compensatedSum.reset(sumOfSqrs.get(bucket), compensationOfSqrs.get(bucket));
compensatedSum.add(value * value);
sumOfSqrs.set(bucket, compensatedSum.value());
compensationOfSqrs.set(bucket, compensatedSum.delta());
mins.set(bucket, Math.min(mins.get(bucket), value));
maxes.set(bucket, Math.max(maxes.get(bucket), value));
}
}
};
}
private void maybeGrow(long bucket) {
if (bucket >= counts.size()) {
final long from = counts.size();
final long overSize = BigArrays.overSize(bucket + 1);
counts = bigArrays().resize(counts, overSize);
sums = bigArrays().resize(sums, overSize);
compensations = bigArrays().resize(compensations, overSize);
mins = bigArrays().resize(mins, overSize);
maxes = bigArrays().resize(maxes, overSize);
sumOfSqrs = bigArrays().resize(sumOfSqrs, overSize);
compensationOfSqrs = bigArrays().resize(compensationOfSqrs, overSize);
mins.fill(from, overSize, Double.POSITIVE_INFINITY);
maxes.fill(from, overSize, Double.NEGATIVE_INFINITY);
}
}
@Override
public boolean hasMetric(String name) {
return InternalExtendedStats.Metrics.hasMetric(name);
}
@Override
public double metric(String name, long owningBucketOrd) {
if (owningBucketOrd >= counts.size()) {
return switch (InternalExtendedStats.Metrics.resolve(name)) {
case count, sum_of_squares, sum -> 0;
case min -> Double.POSITIVE_INFINITY;
case max -> Double.NEGATIVE_INFINITY;
case avg, variance, variance_population, variance_sampling, std_deviation, std_deviation_population, std_deviation_sampling,
std_upper, std_lower -> Double.NaN;
default -> throw new IllegalArgumentException("Unknown value [" + name + "] in common stats aggregation");
};
}
return switch (InternalExtendedStats.Metrics.resolve(name)) {
case count -> counts.get(owningBucketOrd);
case sum -> sums.get(owningBucketOrd);
case min -> mins.get(owningBucketOrd);
case max -> maxes.get(owningBucketOrd);
case avg -> sums.get(owningBucketOrd) / counts.get(owningBucketOrd);
case sum_of_squares -> sumOfSqrs.get(owningBucketOrd);
case variance -> variance(owningBucketOrd);
case variance_population -> variancePopulation(owningBucketOrd);
case variance_sampling -> varianceSampling(owningBucketOrd);
case std_deviation, std_deviation_population, std_deviation_sampling -> Math.sqrt(variance(owningBucketOrd));
case std_upper -> (sums.get(owningBucketOrd) / counts.get(owningBucketOrd)) + (Math.sqrt(variance(owningBucketOrd))
* this.sigma);
case std_lower -> (sums.get(owningBucketOrd) / counts.get(owningBucketOrd)) - (Math.sqrt(variance(owningBucketOrd))
* this.sigma);
default -> throw new IllegalArgumentException("Unknown value [" + name + "] in common stats aggregation");
};
}
private double variance(long owningBucketOrd) {
return variancePopulation(owningBucketOrd);
}
private double variancePopulation(long owningBucketOrd) {
double sum = sums.get(owningBucketOrd);
long count = counts.get(owningBucketOrd);
double variance = (sumOfSqrs.get(owningBucketOrd) - ((sum * sum) / count)) / count;
return variance < 0 ? 0 : variance;
}
private double varianceSampling(long owningBucketOrd) {
double sum = sums.get(owningBucketOrd);
long count = counts.get(owningBucketOrd);
double variance = (sumOfSqrs.get(owningBucketOrd) - ((sum * sum) / count)) / (count - 1);
return variance < 0 ? 0 : variance;
}
@Override
public InternalAggregation buildAggregation(long bucket) {
if (bucket >= counts.size()) {
return buildEmptyAggregation();
}
return new InternalExtendedStats(
name,
counts.get(bucket),
sums.get(bucket),
mins.get(bucket),
maxes.get(bucket),
sumOfSqrs.get(bucket),
sigma,
format,
metadata()
);
}
@Override
public InternalAggregation buildEmptyAggregation() {
return InternalExtendedStats.empty(name, sigma, format, metadata());
}
@Override
public void doClose() {
Releasables.close(counts, maxes, mins, sumOfSqrs, compensationOfSqrs, sums, compensations);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy