org.elasticsearch.search.aggregations.metrics.WeightedAvgAggregator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch Show documentation
Show all versions of elasticsearch Show documentation
Elasticsearch subproject :server
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License
* 2.0 and the Server Side Public License, v 1; you may not use this file except
* in compliance with, at your election, the Elastic License 2.0 or the Server
* Side Public License, v 1.
*/
package org.elasticsearch.search.aggregations.metrics;
import org.apache.lucene.search.ScoreMode;
import org.elasticsearch.common.util.DoubleArray;
import org.elasticsearch.core.Releasables;
import org.elasticsearch.index.fielddata.SortedNumericDoubleValues;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.AggregationExecutionContext;
import org.elasticsearch.search.aggregations.AggregationExecutionException;
import org.elasticsearch.search.aggregations.Aggregator;
import org.elasticsearch.search.aggregations.InternalAggregation;
import org.elasticsearch.search.aggregations.LeafBucketCollector;
import org.elasticsearch.search.aggregations.LeafBucketCollectorBase;
import org.elasticsearch.search.aggregations.support.AggregationContext;
import org.elasticsearch.search.aggregations.support.MultiValuesSource;
import java.io.IOException;
import java.util.Map;
import static org.elasticsearch.search.aggregations.metrics.WeightedAvgAggregationBuilder.VALUE_FIELD;
import static org.elasticsearch.search.aggregations.metrics.WeightedAvgAggregationBuilder.WEIGHT_FIELD;
class WeightedAvgAggregator extends NumericMetricsAggregator.SingleValue {
private final MultiValuesSource.NumericMultiValuesSource valuesSources;
private DoubleArray weights;
private DoubleArray valueSums;
private DoubleArray valueCompensations;
private DoubleArray weightCompensations;
private DocValueFormat format;
WeightedAvgAggregator(
String name,
MultiValuesSource.NumericMultiValuesSource valuesSources,
DocValueFormat format,
AggregationContext context,
Aggregator parent,
Map metadata
) throws IOException {
super(name, context, parent, metadata);
this.valuesSources = valuesSources;
this.format = format;
if (valuesSources != null) {
weights = bigArrays().newDoubleArray(1, true);
valueSums = bigArrays().newDoubleArray(1, true);
valueCompensations = bigArrays().newDoubleArray(1, true);
weightCompensations = bigArrays().newDoubleArray(1, true);
}
}
@Override
public ScoreMode scoreMode() {
return valuesSources != null && valuesSources.needsScores() ? ScoreMode.COMPLETE : ScoreMode.COMPLETE_NO_SCORES;
}
@Override
public LeafBucketCollector getLeafCollector(AggregationExecutionContext aggCtx, final LeafBucketCollector sub) throws IOException {
if (valuesSources == null) {
return LeafBucketCollector.NO_OP_COLLECTOR;
}
final SortedNumericDoubleValues docValues = valuesSources.getField(VALUE_FIELD.getPreferredName(), aggCtx.getLeafReaderContext());
final SortedNumericDoubleValues docWeights = valuesSources.getField(WEIGHT_FIELD.getPreferredName(), aggCtx.getLeafReaderContext());
final CompensatedSum compensatedValueSum = new CompensatedSum(0, 0);
final CompensatedSum compensatedWeightSum = new CompensatedSum(0, 0);
return new LeafBucketCollectorBase(sub, docValues) {
@Override
public void collect(int doc, long bucket) throws IOException {
weights = bigArrays().grow(weights, bucket + 1);
valueSums = bigArrays().grow(valueSums, bucket + 1);
valueCompensations = bigArrays().grow(valueCompensations, bucket + 1);
weightCompensations = bigArrays().grow(weightCompensations, bucket + 1);
if (docValues.advanceExact(doc) && docWeights.advanceExact(doc)) {
if (docWeights.docValueCount() > 1) {
throw new AggregationExecutionException(
"Encountered more than one weight for a "
+ "single document. Use a script to combine multiple weights-per-doc into a single value."
);
}
// There should always be one weight if advanceExact lands us here, either
// a real weight or a `missing` weight
assert docWeights.docValueCount() == 1;
final double weight = docWeights.nextValue();
final int numValues = docValues.docValueCount();
assert numValues > 0;
double valueSum = valueSums.get(bucket);
double valueCompensation = valueCompensations.get(bucket);
compensatedValueSum.reset(valueSum, valueCompensation);
double weightSum = weights.get(bucket);
double weightCompensation = weightCompensations.get(bucket);
compensatedWeightSum.reset(weightSum, weightCompensation);
for (int i = 0; i < numValues; i++) {
compensatedValueSum.add(docValues.nextValue() * weight);
compensatedWeightSum.add(weight);
}
valueSums.set(bucket, compensatedValueSum.value());
valueCompensations.set(bucket, compensatedValueSum.delta());
weights.set(bucket, compensatedWeightSum.value());
weightCompensations.set(bucket, compensatedWeightSum.delta());
}
}
};
}
@Override
public double metric(long owningBucketOrd) {
if (valuesSources == null || owningBucketOrd >= valueSums.size()) {
return Double.NaN;
}
return valueSums.get(owningBucketOrd) / weights.get(owningBucketOrd);
}
@Override
public InternalAggregation buildAggregation(long bucket) {
if (valuesSources == null || bucket >= valueSums.size()) {
return buildEmptyAggregation();
}
return new InternalWeightedAvg(name, valueSums.get(bucket), weights.get(bucket), format, metadata());
}
@Override
public InternalAggregation buildEmptyAggregation() {
return new InternalWeightedAvg(name, 0.0, 0L, format, metadata());
}
@Override
public void doClose() {
Releasables.close(weights, valueSums, valueCompensations, weightCompensations);
}
}