![JAR search and dependency download from the Maven repository](/logo.png)
org.encog.ensemble.EnsembleML Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of encog-core Show documentation
Show all versions of encog-core Show documentation
Encog Machine Learning Framework.
The newest version!
/*
* Encog(tm) Core v3.4 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2017 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.ensemble;
import org.encog.ensemble.data.EnsembleDataSet;
import org.encog.ml.MLClassification;
import org.encog.ml.MLMethod;
import org.encog.ml.MLRegression;
import org.encog.ml.train.MLTrain;
/**
* @author nitbix
*
*/
public interface EnsembleML extends MLMethod, MLClassification, MLRegression {
/**
* Set the dataset for this member
* @param dataSet The data set.
*/
public void setTrainingSet(EnsembleDataSet dataSet);
/**
* Set the training for this member
* @param train The trainer.
*/
public void setTraining(MLTrain train);
/**
* @return Get the dataset for this member
*/
public EnsembleDataSet getTrainingSet();
/**
* @return Get the dataset for this member.
*/
public MLTrain getTraining();
/**
* Train the ML to a certain accuracy.
* @param targetError The target error.
*/
public void train(double targetError);
/**
* Train the ML to a certain accuracy.
* @param targetError Target error.
* @param verbose Verbose mode.
* @param maxIterations Stop after this number of iterations
*/
public void train(double targetError, int maxIterations, boolean verbose);
/**
* Train the ML to a certain accuracy.
* @param targetError Target error.
* @param maxIterations Stop after this number of iterations
*/
public void train(double targetError, int maxIterations);
/**
* Train the ML to a certain accuracy.
* @param targetError Target error.
* @param verbose Verbose mode.
*/
public void train(double targetError, boolean verbose);
/**
* Get the error for this ML on the dataset
* @param testset The dataset.
* @return The error.
*/
public double getError(EnsembleDataSet testset);
/**
* Set the MLMethod to run
* @param newMl The new ML.
*/
public void setMl(MLMethod newMl);
/**
* @return Returns the current MLMethod
*/
public MLMethod getMl();
public void trainStep();
public String getLabel();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy