All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.encog.mathutil.ComplexNumber Maven / Gradle / Ivy

The newest version!
/*
 * Encog(tm) Core v3.4 - Java Version
 * http://www.heatonresearch.com/encog/
 * https://github.com/encog/encog-java-core
 
 * Copyright 2008-2017 Heaton Research, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *   
 * For more information on Heaton Research copyrights, licenses 
 * and trademarks visit:
 * http://www.heatonresearch.com/copyright
 */
package org.encog.mathutil;

/**
 * A complex number class.  This class is based on source code by
 * 
 * Andrew G. Bennett, Department of Mathematics
 * Kansas State University
 * 
 * The original version can be found here:
 * 
 * http://www.math.ksu.edu/~bennett/jomacg/c.html
 *
 */
public class ComplexNumber {

	/**
	 * The real part.
	 */
	private final double x;
	
	/**
	 * The imaginary part.
	 */
	private final double y;

	/**
	    Constructs the complex number z = u + i*v
	    @param u Real part
	    @param v Imaginary part
	*/
	public ComplexNumber(double u, double v) {
		x = u;
		y = v;
	}

	/**
	 * Create a complex number from another complex number.
	 * @param other The other complex number. 
	 */
	public ComplexNumber(ComplexNumber other) {
		this.x = other.getReal();
		this.y = other.getImaginary();
	}

	/**
	    Real part of this Complex number 
	    (the x-coordinate in rectangular coordinates).
	    @return Re[z] where z is this Complex number.
	*/
	public double getReal() {
		return x;
	}

	/**
	    Imaginary part of this Complex number 
	    (the y-coordinate in rectangular coordinates).
	    @return Im[z] where z is this Complex number.
	*/
	public double getImaginary() {
		return y;
	}

	/**
	    Modulus of this Complex number
	    (the distance from the origin in polar coordinates).
	    @return |z| where z is this Complex number.
	*/
	public double mod() {
		if (x != 0 || y != 0) {
			return Math.sqrt(x * x + y * y);
		} else {
			return 0d;
		}
	}

	/**
	    Argument of this Complex number 
	    (the angle in radians with the x-axis in polar coordinates).
	    @return arg(z) where z is this Complex number.
	*/
	public double arg() {
		return Math.atan2(y, x);
	}

	/**
	    Complex conjugate of this Complex number
	    (the conjugate of x+i*y is x-i*y).
	    @return z-bar where z is this Complex number.
	*/
	public ComplexNumber conj() {
		return new ComplexNumber(x, -y);
	}

	/**
	    Addition of Complex numbers (doesn't change this Complex number).
	    
(x+i*y) + (s+i*t) = (x+s)+i*(y+t). @param w is the number to add. @return z+w where z is this Complex number. */ public ComplexNumber plus(ComplexNumber w) { return new ComplexNumber(x + w.getReal(), y + w.getImaginary()); } /** Subtraction of Complex numbers (doesn't change this Complex number).
(x+i*y) - (s+i*t) = (x-s)+i*(y-t). @param w is the number to subtract. @return z-w where z is this Complex number. */ public ComplexNumber minus(ComplexNumber w) { return new ComplexNumber(x - w.getReal(), y - w.getImaginary()); } /** Complex multiplication (doesn't change this Complex number). @param w is the number to multiply by. @return z*w where z is this Complex number. */ public ComplexNumber times(ComplexNumber w) { return new ComplexNumber(x * w.getReal() - y * w.getImaginary(), x * w.getImaginary() + y * w.getReal()); } /** Division of Complex numbers (doesn't change this Complex number).
(x+i*y)/(s+i*t) = ((x*s+y*t) + i*(y*s-y*t)) / (s^2+t^2) @param w is the number to divide by @return new Complex number z/w where z is this Complex number */ public ComplexNumber div(ComplexNumber w) { double den = Math.pow(w.mod(), 2); return new ComplexNumber((x * w.getReal() + y * w.getImaginary()) / den, (y * w.getReal() - x * w.getImaginary()) / den); } /** Complex exponential (doesn't change this Complex number). @return exp(z) where z is this Complex number. */ public ComplexNumber exp() { return new ComplexNumber(Math.exp(x) * Math.cos(y), Math.exp(x) * Math.sin(y)); } /** Principal branch of the Complex logarithm of this Complex number. (doesn't change this Complex number). The principal branch is the branch with -pi < arg <= pi. @return log(z) where z is this Complex number. */ public ComplexNumber log() { return new ComplexNumber(Math.log(this.mod()), this.arg()); } /** Complex square root (doesn't change this complex number). Computes the principal branch of the square root, which is the value with 0 <= arg < pi. @return sqrt(z) where z is this Complex number. */ public ComplexNumber sqrt() { double r = Math.sqrt(this.mod()); double theta = this.arg() / 2; return new ComplexNumber(r * Math.cos(theta), r * Math.sin(theta)); } // Real cosh function (used to compute complex trig functions) private double cosh(double theta) { return (Math.exp(theta) + Math.exp(-theta)) / 2; } // Real sinh function (used to compute complex trig functions) private double sinh(double theta) { return (Math.exp(theta) - Math.exp(-theta)) / 2; } /** Sine of this Complex number (doesn't change this Complex number).
sin(z) = (exp(i*z)-exp(-i*z))/(2*i). @return sin(z) where z is this Complex number. */ public ComplexNumber sin() { return new ComplexNumber(cosh(y) * Math.sin(x), sinh(y) * Math.cos(x)); } /** Cosine of this Complex number (doesn't change this Complex number).
cos(z) = (exp(i*z)+exp(-i*z))/ 2. @return cos(z) where z is this Complex number. */ public ComplexNumber cos() { return new ComplexNumber(cosh(y) * Math.cos(x), -sinh(y) * Math.sin(x)); } /** Hyperbolic sine of this Complex number (doesn't change this Complex number).
sinh(z) = (exp(z)-exp(-z))/2. @return sinh(z) where z is this Complex number. */ public ComplexNumber sinh() { return new ComplexNumber(sinh(x) * Math.cos(y), cosh(x) * Math.sin(y)); } /** Hyperbolic cosine of this Complex number (doesn't change this Complex number).
cosh(z) = (exp(z) + exp(-z)) / 2. @return cosh(z) where z is this Complex number. */ public ComplexNumber cosh() { return new ComplexNumber(cosh(x) * Math.cos(y), sinh(x) * Math.sin(y)); } /** Tangent of this Complex number (doesn't change this Complex number).
tan(z) = sin(z)/cos(z). @return tan(z) where z is this Complex number. */ public ComplexNumber tan() { return (this.sin()).div(this.cos()); } /** Negative of this complex number (chs stands for change sign). This produces a new Complex number and doesn't change this Complex number.
-(x+i*y) = -x-i*y. @return -z where z is this Complex number. */ public ComplexNumber chs() { return new ComplexNumber(-x, -y); } /** String representation of this Complex number. @return x+i*y, x-i*y, x, or i*y as appropriate. */ public String toString() { if (x != 0 && y > 0) { return x + " + " + y + "i"; } if (x != 0 && y < 0) { return x + " - " + (-y) + "i"; } if (y == 0) { return String.valueOf(x); } if (x == 0) { return y + "i"; } // shouldn't get here (unless Inf or NaN) return x + " + i*" + y; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy