Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
endpoints4s.ujson.JsonSchemas.scala Maven / Gradle / Ivy
package endpoints4s.ujson
import endpoints4s.algebra.JsonSchemas.PreciseField
import endpoints4s.{ujson => _, _}
import scala.collection.compat._
/** @group interpreters
*/
trait JsonSchemas extends algebra.NoDocsJsonSchemas with TuplesSchemas {
trait JsonSchema[A] {
def encoder: Encoder[A, ujson.Value]
def decoder: Decoder[ujson.Value, A]
final def codec: Codec[ujson.Value, A] =
Codec.fromEncoderAndDecoder(encoder)(decoder)
final def stringCodec: Codec[String, A] =
Codec.sequentially(codecs.stringJson)(codec)
}
trait Record[A] extends JsonSchema[A] {
override def encoder: Encoder[A, ujson.Obj] // Result type refined to `Obj`
}
trait Tagged[A] extends Record[A] {
def discriminator: String
def findDecoder(tag: String): Option[Decoder[ujson.Value, A]]
def tagAndObj(a: A): (String, ujson.Obj)
final val decoder = {
case json @ ujson.Obj(fields) =>
fields.get(discriminator) match {
case Some(ujson.Str(tag)) =>
findDecoder(tag) match {
case Some(decoder) => decoder.decode(json)
case None => Invalid(s"Invalid type discriminator: '$tag'")
}
case _ =>
Invalid(
s"Missing type discriminator property '$discriminator': $json"
)
}
case json => Invalid(s"Invalid JSON object: $json")
}
final val encoder = value => {
val (tag, json) = tagAndObj(value)
json(discriminator) = ujson.Str(tag)
json
}
}
type Enum[A] = JsonSchema[A]
implicit def jsonSchemaPartialInvFunctor: PartialInvariantFunctor[JsonSchema] =
new PartialInvariantFunctor[JsonSchema] {
def xmapPartial[A, B](
fa: JsonSchema[A],
f: A => Validated[B],
g: B => A
): JsonSchema[B] =
new JsonSchema[B] {
val decoder = Decoder.sequentially(fa.decoder)(a => f(a))
val encoder = Encoder.sequentially((b: B) => g(b))(fa.encoder)
}
}
implicit def recordPartialInvFunctor: PartialInvariantFunctor[Record] =
new PartialInvariantFunctor[Record] {
def xmapPartial[A, B](
fa: Record[A],
f: A => Validated[B],
g: B => A
): Record[B] =
new Record[B] {
val decoder = Decoder.sequentially(fa.decoder)(a => f(a))
val encoder = Encoder.sequentially((b: B) => g(b))(fa.encoder)
}
}
implicit def taggedPartialInvFunctor: PartialInvariantFunctor[Tagged] =
new PartialInvariantFunctor[Tagged] {
def xmapPartial[A, B](
fa: Tagged[A],
f: A => Validated[B],
g: B => A
): Tagged[B] =
new Tagged[B] {
val discriminator = fa.discriminator
def findDecoder(tag: String): Option[Decoder[ujson.Value, B]] =
fa.findDecoder(tag).map(Decoder.sequentially(_)(a => f(a)))
def tagAndObj(b: B): (String, ujson.Obj) = fa.tagAndObj(g(b))
}
}
def enumeration[A](values: Seq[A])(tpe: JsonSchema[A]): Enum[A] =
new JsonSchema[A] {
val decoder = Decoder.sequentially(tpe.decoder) { a =>
if (values.contains(a)) {
Valid(a)
} else {
Invalid(
s"Invalid value: ${tpe.encoder.encode(a)} ; valid values are: ${values
.map(a => tpe.encoder.encode(a))
.mkString(", ")}"
)
}
}
val encoder = tpe.encoder
}
override def lazySchema[A](name: String)(schema: => JsonSchema[A]): JsonSchema[A] = {
// The schema won’t be evaluated until its `reads` or `writes` is effectively used
lazy val evaluatedSchema = schema
new JsonSchema[A] {
val decoder = json => evaluatedSchema.decoder.decode(json)
val encoder = value => evaluatedSchema.encoder.encode(value)
}
}
def lazyRecord[A](schema: => Record[A], name: String): JsonSchema[A] =
lazySchema(name)(schema)
def lazyTagged[A](schema: => Tagged[A], name: String): JsonSchema[A] =
lazySchema(name)(schema)
override def lazyRecord[A](name: String)(schema: => Record[A]): Record[A] = {
// The schema won’t be evaluated until its `reads` or `writes` is effectively used
lazy val evaluatedSchema = schema
new Record[A] {
val decoder = json => evaluatedSchema.decoder.decode(json)
val encoder = value => evaluatedSchema.encoder.encode(value)
}
}
override def lazyTagged[A](name: String)(schema: => Tagged[A]): Tagged[A] = {
// The schema won’t be evaluated until its `reads` or `writes` is effectively used
lazy val evaluatedSchema = schema
new Tagged[A] {
lazy val discriminator = evaluatedSchema.discriminator
def findDecoder(tag: String): Option[Decoder[ujson.Value, A]] =
evaluatedSchema.findDecoder(tag)
def tagAndObj(a: A): (String, ujson.Obj) =
evaluatedSchema.tagAndObj(a)
}
}
lazy val emptyRecord: Record[Unit] = new Record[Unit] {
val decoder = {
case _: ujson.Obj => Valid(())
case json => Invalid(s"Invalid JSON object: $json")
}
val encoder = _ => ujson.Obj()
}
/** Override this method to customize the behaviour of encoders produced by
* [[optFieldWithDefault]] when encoding a field value that corresponds to
* the specified default value. By default, the default values are included.
*
* As an example, consider the following Scala class and instances of it.
*
* {{{
* case class Book(
* name: String,
* availableAsEBook: Boolean = false
* )
*
* val book1 = Book("Complete Imaginary Works", false)
* val book2 = Book("History of Writing", true)
* }}}
*
* With `encodersSkipDefaultValues = false` (which is the default), the field
* is always encoded, regardless of whether it is also the default value.
* This makes encoding performance predictable, but results in larger and
* more complicated encoded payloads:
*
* {{{
* { "name": "Complete Imaginary Works", "availableAsEBook": false }
* { "name": "History of Writing", "availableAsEBook": true }
* }}}
*
* With `encodersSkipDefaultValues = true`, the field is skipped if its value
* if also the field's default value. This means encoding can be slower
* (since potentially expensive equality check needs to be performed), but
* the encoded payloads are smaller and simpler:
*
* {{{
* { "name": "Complete Imaginary Works" }
* { "name": "History of Writing", "availableAsEBook": true }
* }}}
*/
def encodersSkipDefaultValues: Boolean = false
def field[A](name: String, documentation: Option[String] = None)(implicit
tpe: JsonSchema[A]
): Record[A] =
new Record[A] {
val decoder = {
case obj @ ujson.Obj(fields) =>
fields.get(name) match {
case Some(json) => tpe.decoder.decode(json)
case None =>
Invalid(s"Missing property '$name' in JSON object: $obj")
}
case json => Invalid(s"Invalid JSON object: $json")
}
val encoder = value => ujson.Obj(name -> tpe.encoder.encode(value))
}
def optField[A](name: String, documentation: Option[String] = None)(implicit
tpe: JsonSchema[A]
): Record[Option[A]] =
new Record[Option[A]] {
val decoder = {
case ujson.Obj(fields) =>
fields.get(name) match {
case Some(ujson.Null) => Valid(None)
case Some(json) => tpe.decoder.decode(json).map(Some(_))
case None => Valid(None)
}
case json => Invalid(s"Invalid JSON object: $json")
}
val encoder = new Encoder[Option[A], ujson.Obj] {
def encode(maybeValue: Option[A]) =
maybeValue match {
case None => ujson.Obj()
case Some(value) => ujson.Obj(name -> tpe.codec.encode(value))
}
}
}
override def optFieldWithDefault[A](
name: String,
defaultValue: A,
docs: Option[String] = None
)(implicit
tpe: JsonSchema[A]
): Record[A] =
new Record[A] {
val decoder = {
case obj @ ujson.Obj(fields) =>
fields.get(name) match {
case Some(ujson.Null) => Valid(defaultValue)
case Some(json) => tpe.decoder.decode(json)
case None => Valid(defaultValue)
}
case json => Invalid(s"Invalid JSON object: $json")
}
val encoder: Encoder[A, ujson.Obj] =
if (encodersSkipDefaultValues)
value =>
if (value == defaultValue) ujson.Obj()
else ujson.Obj(name -> tpe.encoder.encode(value))
else
value => ujson.Obj(name -> tpe.encoder.encode(value))
}
override def preciseField[A](name: String, documentation: Option[String] = None)(implicit
tpe: JsonSchema[A]
): Record[PreciseField[A]] =
new Record[PreciseField[A]] {
val decoder = {
case ujson.Obj(fields) =>
fields.get(name) match {
case Some(ujson.Null) => Valid(PreciseField.Null)
case Some(json) => tpe.decoder.decode(json).map(PreciseField.Present.apply)
case None => Valid(PreciseField.Absent)
}
case json => Invalid(s"Invalid JSON object: $json")
}
val encoder = new Encoder[PreciseField[A], ujson.Obj] {
def encode(maybeValue: PreciseField[A]) =
maybeValue match {
case PreciseField.Absent => ujson.Obj()
case PreciseField.Null => ujson.Obj(name -> ujson.Null)
case PreciseField.Present(value) => ujson.Obj(name -> tpe.codec.encode(value))
}
}
}
def taggedRecord[A](recordA: Record[A], tag: String): Tagged[A] =
new Tagged[A] {
val discriminator = defaultDiscriminatorName
def findDecoder(tagName: String) =
if (tagName == tag) Some(recordA.decoder) else None
def tagAndObj(value: A) = (tag, recordA.encoder.encode(value))
}
def withDiscriminatorTagged[A](
tagged: Tagged[A],
discriminatorName: String
): Tagged[A] =
new Tagged[A] {
val discriminator = discriminatorName
def findDecoder(tag: String): Option[Decoder[ujson.Value, A]] =
tagged.findDecoder(tag)
def tagAndObj(value: A) = tagged.tagAndObj(value)
}
def choiceTagged[A, B](
taggedA: Tagged[A],
taggedB: Tagged[B]
): Tagged[Either[A, B]] = {
assert(taggedA.discriminator == taggedB.discriminator)
new Tagged[Either[A, B]] {
val discriminator = taggedB.discriminator
def findDecoder(tag: String): Option[Decoder[ujson.Value, Either[A, B]]] =
taggedA
.findDecoder(tag)
.map(Decoder.sequentially(_)(a => Valid(Left(a)))) orElse
taggedB
.findDecoder(tag)
.map(Decoder.sequentially(_)(b => Valid(Right(b))))
def tagAndObj(value: Either[A, B]) =
value match {
case Left(a) => taggedA.tagAndObj(a)
case Right(b) => taggedB.tagAndObj(b)
}
}
}
def zipRecords[A, B](recordA: Record[A], recordB: Record[B])(implicit
t: Tupler[A, B]
): Record[t.Out] =
new Record[t.Out] {
val decoder = (json: ujson.Value) =>
recordA.decoder.decode(json) zip recordB.decoder.decode(json)
val encoder = new Encoder[t.Out, ujson.Obj] {
def encode(from: t.Out): ujson.Obj = {
val (a, b) = t.unapply(from)
val result = ujson.Obj()
result.value ++= recordA.encoder.encode(a).value
result.value ++= recordB.encoder.encode(b).value
result
}
}
}
def orFallbackToJsonSchema[A, B](
schemaA: JsonSchema[A],
schemaB: JsonSchema[B]
): JsonSchema[Either[A, B]] =
new JsonSchema[Either[A, B]] {
val decoder: Decoder[ujson.Value, Either[A, B]] = json => {
schemaA.decoder.decode(json) match {
case Valid(value) => Valid(Left(value))
case Invalid(_) =>
schemaB.decoder
.decode(json)
.map(Right(_))
.mapErrors(_ => s"Invalid value: $json" :: Nil)
}
}
val encoder: Encoder[Either[A, B], ujson.Value] = {
case Left(a) => schemaA.encoder.encode(a)
case Right(b) => schemaB.encoder.encode(b)
}
}
def stringJsonSchema(format: Option[String]): JsonSchema[String] =
new JsonSchema[String] {
val decoder = {
case ujson.Str(str) => Valid(str)
case json => Invalid(s"Invalid string value: $json")
}
val encoder = ujson.Str(_)
}
implicit lazy val intJsonSchema: JsonSchema[Int] =
intWithConstraintsJsonSchema(NumericConstraints[Int])
implicit lazy val longJsonSchema: JsonSchema[Long] =
longWithConstraintsJsonSchema(NumericConstraints[Long])
implicit lazy val bigdecimalJsonSchema: JsonSchema[BigDecimal] =
bigdecimalWithConstraintsJsonSchema(NumericConstraints[BigDecimal])
implicit lazy val floatJsonSchema: JsonSchema[Float] =
floatWithConstraintsJsonSchema(NumericConstraints[Float])
implicit lazy val doubleJsonSchema: JsonSchema[Double] =
doubleWithConstraintsJsonSchema(NumericConstraints[Double])
override def intWithConstraintsJsonSchema(constraints: NumericConstraints[Int]): JsonSchema[Int] =
new JsonSchema[Int] {
val decoder = {
case ujson.Num(x) if x.isValidInt =>
val int = x.toInt
if (constraints.satisfiedBy(int)) Valid(x.toInt)
else Invalid(s"$x does not satisfy the constraints: $constraints")
case json => Invalid(s"Invalid integer value: $json")
}
val encoder = n => ujson.Num(n.toDouble)
}
override def longWithConstraintsJsonSchema(
constraints: NumericConstraints[Long]
): JsonSchema[Long] =
new JsonSchema[Long] {
val decoder = {
case json @ ujson.Num(x) =>
val y = BigDecimal(
x
) // no `isValidLong` operation on `Double`, so convert to `BigDecimal`
if (y.isValidLong) {
val long = y.toLong
if (constraints.satisfiedBy(long)) Valid(long)
else Invalid(s"$x does not satisfy the constraints: $constraints")
} else Invalid(s"Invalid integer value: $json")
case json => Invalid(s"Invalid number value: $json")
}
val encoder = n => ujson.Num(n.toDouble)
}
override def bigdecimalWithConstraintsJsonSchema(
constraints: NumericConstraints[BigDecimal]
): JsonSchema[BigDecimal] =
new JsonSchema[BigDecimal] {
val decoder = {
case ujson.Num(x) if constraints.satisfiedBy(x) => Valid(BigDecimal(x))
case ujson.Num(x) => Invalid(s"$x does not satisfy the constraints: $constraints")
case json => Invalid(s"Invalid number value: $json")
}
val encoder = x => ujson.Num(x.doubleValue)
}
private[this] object JsonDouble {
def unapply(json: ujson.Value): Option[Double] = json match {
case ujson.Num(x) => Some(x)
case ujson.Str("NaN") => Some(Double.NaN)
case ujson.Str("Infinity") => Some(Double.PositiveInfinity)
case ujson.Str("-Infinity") => Some(Double.NegativeInfinity)
case _ => None
}
}
override def floatWithConstraintsJsonSchema(
constraints: NumericConstraints[Float]
): JsonSchema[Float] =
new JsonSchema[Float] {
val decoder = {
case JsonDouble(double) =>
val float = double.toFloat
if (constraints.satisfiedBy(float)) Valid(float)
else Invalid(s"$double does not satisfy the constraints: $constraints")
case json => Invalid(s"Invalid number value: $json")
}
val encoder = x => ujson.Num(x.toDouble)
}
override def doubleWithConstraintsJsonSchema(
constraints: NumericConstraints[Double]
): JsonSchema[Double] =
new JsonSchema[Double] {
val decoder = {
case JsonDouble(double) =>
if (constraints.satisfiedBy(double)) Valid(double)
else Invalid(s"$double does not satisfy the constraints: $constraints")
case json => Invalid(s"Invalid number value: $json")
}
val encoder = ujson.Num(_)
}
implicit def booleanJsonSchema: JsonSchema[Boolean] =
new JsonSchema[Boolean] {
val decoder = {
case ujson.Bool(b) => Valid(b)
case json => Invalid(s"Invalid boolean value: $json")
}
val encoder = ujson.Bool(_)
}
implicit def byteJsonSchema: JsonSchema[Byte] =
new JsonSchema[Byte] {
val decoder = {
case ujson.Num(x) if x.isValidByte => Valid(x.toByte)
case json => Invalid(s"Invalid byte value: $json")
}
val encoder = b => ujson.Num(b.toDouble)
}
implicit def arrayJsonSchema[C[X] <: Iterable[X], A](implicit
jsonSchema: JsonSchema[A],
factory: Factory[A, C[A]]
): JsonSchema[C[A]] =
new JsonSchema[C[A]] {
val decoder = {
case ujson.Arr(items) =>
val builder = factory.newBuilder
builder.sizeHint(items)
items
.map(jsonSchema.decoder.decode)
.foldLeft[Validated[collection.mutable.Builder[A, C[A]]]](
Valid(builder)
) { case (acc, value) =>
acc.zip(value).map { case (b, a) => b += a }
}
.map(_.result())
case json => Invalid(s"Invalid JSON array: $json")
}
val encoder = as => ujson.Arr.from(as.map(jsonSchema.codec.encode))
}
implicit def mapJsonSchema[A](implicit
jsonSchema: JsonSchema[A]
): JsonSchema[Map[String, A]] =
new JsonSchema[Map[String, A]] {
val decoder = {
case ujson.Obj(items) =>
val builder = Map.newBuilder[String, A]
builder.sizeHint(items)
items
.map { case (name, value) =>
jsonSchema.decoder.decode(value).map((name, _))
}
.foldLeft[Validated[
collection.mutable.Builder[(String, A), Map[String, A]]
]](Valid(builder)) { case (acc, value) =>
acc.zip(value).map { case (b, name, value) =>
b += name -> value
}
}
.map(_.result())
case json => Invalid(s"Invalid JSON object: $json")
}
val encoder = map => {
val result = ujson.Obj()
map.foreach { case (k, v) =>
result.value.put(k, jsonSchema.codec.encode(v))
}
result
}
}
}