
org.datacleaner.components.machinelearning.MLEvaluationAnalyzer Maven / Gradle / Ivy
/**
* DataCleaner (community edition)
* Copyright (C) 2014 Free Software Foundation, Inc.
*
* This copyrighted material is made available to anyone wishing to use, modify,
* copy, or redistribute it subject to the terms and conditions of the GNU
* Lesser General Public License, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this distribution; if not, write to:
* Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
package org.datacleaner.components.machinelearning;
import java.io.File;
import java.io.IOException;
import javax.inject.Named;
import org.apache.commons.lang.SerializationUtils;
import org.datacleaner.api.Analyzer;
import org.datacleaner.api.Categorized;
import org.datacleaner.api.Configured;
import org.datacleaner.api.FileProperty;
import org.datacleaner.api.Initialize;
import org.datacleaner.api.FileProperty.FileAccessMode;
import org.datacleaner.api.InputColumn;
import org.datacleaner.api.InputRow;
import org.datacleaner.api.Validate;
import org.datacleaner.components.machinelearning.api.MLClassificationRecord;
import org.datacleaner.components.machinelearning.api.MLClassifier;
import org.datacleaner.components.machinelearning.impl.MLClassificationRecordImpl;
import org.datacleaner.result.Crosstab;
import com.google.common.io.Files;
@Named("Classifier cross-evaluation")
@Categorized(MachineLearningCategory.class)
public class MLEvaluationAnalyzer implements Analyzer {
@Configured
InputColumn> classification;
@Configured
InputColumn>[] features;
@Configured
@FileProperty(accessMode = FileAccessMode.OPEN, extension = "model.ser")
File modelFile = new File("classifier.model.ser");
private MLClassifier classifier;
private MLConfusionMatrixBuilder confusionMatrixBuilder;
@Validate
public void validate() throws IOException {
if (!modelFile.exists()) {
throw new IllegalArgumentException("Model file '" + modelFile + "' does not exist.");
}
classifier = (MLClassifier) SerializationUtils.deserialize(Files.toByteArray(modelFile));
MLComponentUtils.validateClassifierMapping(classifier, features);
}
@Initialize
public void init() throws IOException {
classifier = (MLClassifier) SerializationUtils.deserialize(Files.toByteArray(modelFile));
confusionMatrixBuilder = new MLConfusionMatrixBuilder(classifier);
}
@Override
public void run(InputRow row, int distinctCount) {
final MLClassificationRecord record = MLClassificationRecordImpl.forTraining(row, classification, features);
if (record == null) {
return;
}
confusionMatrixBuilder.append(record);
}
@Override
public MLClassificationAnalyzerResult getResult() {
final Crosstab crosstab = confusionMatrixBuilder.build();
return new MLClassificationAnalyzerResult(null, null, crosstab);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy