org.datacleaner.components.machinelearning.impl.SmileRegressor Maven / Gradle / Ivy
/**
* DataCleaner (community edition)
* Copyright (C) 2014 Free Software Foundation, Inc.
*
* This copyrighted material is made available to anyone wishing to use, modify,
* copy, or redistribute it subject to the terms and conditions of the GNU
* Lesser General Public License, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this distribution; if not, write to:
* Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
package org.datacleaner.components.machinelearning.impl;
import java.util.List;
import org.datacleaner.components.machinelearning.api.MLFeatureModifier;
import org.datacleaner.components.machinelearning.api.MLRecord;
import org.datacleaner.components.machinelearning.api.MLRegressionMetadata;
import org.datacleaner.components.machinelearning.api.MLRegressor;
import smile.regression.Regression;
public class SmileRegressor implements MLRegressor {
private static final long serialVersionUID = 1L;
private final MLRegressionMetadata metadata;
private final Regression regression;
public SmileRegressor(MLRegressionMetadata metadata, Regression regression) {
this.metadata = metadata;
this.regression = regression;
}
@Override
public MLRegressionMetadata getMetadata() {
return metadata;
}
@Override
public double predict(MLRecord record) {
final List featureModifiers = getMetadata().getFeatureModifiers();
final double[] featureValues = MLFeatureUtils.generateFeatureValues(record, featureModifiers);
return predict(featureValues);
}
@Override
public double predict(double[] featureValues) {
return regression.predict(featureValues);
}
}