EOorg.EOeolang.EOmath.EOnegative_infinity$EOdiv Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of eo-math Show documentation
Show all versions of eo-math Show documentation
Math Primitives for EO Programming Language
/*
* This file was auto-generated by eolang-maven-plugin
* on 2022-07-15T10:40:21.854Z. Don't edit it,
* your changes will be discarded on the next build.
*
* The EO sources were compiled to XMIR on
* 2022-07-15T10:39:10.123874Z by the compiler v.0.24.0.
*/
package EOorg.EOeolang.EOmath;
import org.eolang.*;
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
@XmirObject(name = "negative-infinity$div", oname = "div", source = "/home/r/repo/src/main/eo/org/eolang/math/negative-infinity.eo")
public final class EOnegative_infinity$EOdiv extends PhDefault {
public EOnegative_infinity$EOdiv(final Phi sigma) {
super(sigma);
this.add("x", new AtFree(/* default */));
this.add("φ", new AtOnce(new AtComposite(this, rho -> {
Phi ret_base_base_base_base = new PhMethod(rho, "x");
ret_base_base_base_base = new PhLocated(ret_base_base_base_base, 126, 8);
Phi ret_base_base_base = new PhMethod(ret_base_base_base_base, "as-bytes");
ret_base_base_base = new PhLocated(ret_base_base_base, 126, 9);
Phi ret_base_base = new PhMethod(ret_base_base_base, "eq");
ret_base_base = new PhLocated(ret_base_base, 126, 18);
ret_base_base = new PhCopy(ret_base_base);
Phi ret_base_base_1_base = Phi.Φ.attr("org").get().attr("eolang").get().attr("math").get().attr("nan").get();
ret_base_base_1_base = new PhLocated(ret_base_base_1_base, 126, 23);
Phi ret_base_base_1 = new PhMethod(ret_base_base_1_base, "as-bytes");
ret_base_base_1 = new PhLocated(ret_base_base_1, 126, 26);
ret_base_base = new PhWith(ret_base_base, 0, ret_base_base_1);
Phi ret_base = new PhMethod(ret_base_base, "or");
ret_base = new PhLocated(ret_base, 125, 6);
ret_base = new PhCopy(ret_base);
Phi ret_base_1_base = new PhMethod(rho, "x");
ret_base_1_base = new PhLocated(ret_base_1_base, 127, 8);
Phi ret_base_1 = new PhMethod(ret_base_1_base, "eq");
ret_base_1 = new PhLocated(ret_base_1, 127, 9);
ret_base_1 = new PhCopy(ret_base_1);
Phi ret_base_1_1 = new PhMethod(rho, "ρ");
ret_base_1_1 = new PhLocated(ret_base_1_1, 127, 13);
ret_base_1 = new PhWith(ret_base_1, 0, ret_base_1_1);
Phi ret_base_2_base = new PhMethod(rho, "x");
ret_base_2_base = new PhLocated(ret_base_2_base, 128, 8);
Phi ret_base_2 = new PhMethod(ret_base_2_base, "eq");
ret_base_2 = new PhLocated(ret_base_2, 128, 9);
ret_base_2 = new PhCopy(ret_base_2);
Phi ret_base_2_1 = Phi.Φ.attr("org").get().attr("eolang").get().attr("math").get().attr("positive-infinity").get();
ret_base_2_1 = new PhLocated(ret_base_2_1, 128, 13);
ret_base_2 = new PhWith(ret_base_2, 0, ret_base_2_1);
ret_base = new PhWith(ret_base, 0, ret_base_1);
ret_base = new PhWith(ret_base, 1, ret_base_2);
Phi ret = new PhMethod(ret_base, "if");
ret = new PhLocated(ret, 124, 4);
ret = new PhCopy(ret);
Phi ret_1 = Phi.Φ.attr("org").get().attr("eolang").get().attr("math").get().attr("nan").get();
ret_1 = new PhLocated(ret_1, 129, 6);
Phi ret_2 = new PhMethod(rho, "ρ");
ret_2 = new PhLocated(ret_2, 130, 6);
ret = new PhWith(ret, 0, ret_1);
ret = new PhWith(ret, 1, ret_2);
return ret;
})));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy