edu.emory.cci.aiw.umls.PermutationGenerator Maven / Gradle / Ivy
/*
* #%L
* UMLSQuery
* %%
* Copyright (C) 2012 - 2013 Emory University
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
package edu.emory.cci.aiw.umls;
import java.math.BigInteger;
/**
* A class to generate permutations of an array. Source:
* http://www.merriampark.com/perm.htm Found on: 8/6/2010
*
*/
final class PermutationGenerator {
private int[] a;
private BigInteger numLeft;
private BigInteger total;
// -----------------------------------------------------------
// Constructor. WARNING: Don't make n too large.
// Recall that the number of permutations is n!
// which can be very large, even when n is as small as 20 --
// 20! = 2,432,902,008,176,640,000 and
// 21! is too big to fit into a Java long, which is
// why we use BigInteger instead.
// ----------------------------------------------------------
public PermutationGenerator(int n) {
if (n < 1) {
throw new IllegalArgumentException("Min 1");
}
a = new int[n];
total = getFactorial(n);
reset();
}
// ------
// Reset
// ------
public void reset() {
for (int i = 0; i < a.length; i++) {
a[i] = i;
}
numLeft = new BigInteger(total.toString());
}
// ------------------------------------------------
// Return number of permutations not yet generated
// ------------------------------------------------
public BigInteger getNumLeft() {
return numLeft;
}
// ------------------------------------
// Return total number of permutations
// ------------------------------------
public BigInteger getTotal() {
return total;
}
// -----------------------------
// Are there more permutations?
// -----------------------------
public boolean hasMore() {
return numLeft.compareTo(BigInteger.ZERO) == 1;
}
// ------------------
// Compute factorial
// ------------------
private static BigInteger getFactorial(int n) {
BigInteger fact = BigInteger.ONE;
for (int i = n; i > 1; i--) {
fact = fact.multiply(new BigInteger(Integer.toString(i)));
}
return fact;
}
// --------------------------------------------------------
// Generate next permutation (algorithm from Rosen p. 284)
// --------------------------------------------------------
public int[] getNext() {
if (numLeft.equals(total)) {
numLeft = numLeft.subtract(BigInteger.ONE);
return a;
}
int temp;
// Find largest index j with a[j] < a[j+1]
int j = a.length - 2;
while (a[j] > a[j + 1]) {
j--;
}
// Find index k such that a[k] is smallest integer
// greater than a[j] to the right of a[j]
int k = a.length - 1;
while (a[j] > a[k]) {
k--;
}
// Interchange a[j] and a[k]
temp = a[k];
a[k] = a[j];
a[j] = temp;
// Put tail end of permutation after jth position in increasing order
int r = a.length - 1;
int s = j + 1;
while (r > s) {
temp = a[s];
a[s] = a[r];
a[r] = temp;
r--;
s++;
}
numLeft = numLeft.subtract(BigInteger.ONE);
return a;
}
public static void main(String[] args) {
String[] words = { "foo", "bar", "baz", "quux" };
PermutationGenerator pg = new PermutationGenerator(4);
while (pg.hasMore()) {
StringBuilder b = new StringBuilder();
int[] indices = pg.getNext();
for (int i : indices) {
b.append(words[i] + " ");
}
System.out.println(b);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy