All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.evosuite.coverage.mutation.OnlyMutationSuiteFitness Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
 * contributors
 *
 * This file is part of EvoSuite.
 *
 * EvoSuite is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3.0 of the License, or
 * (at your option) any later version.
 *
 * EvoSuite is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EvoSuite. If not, see .
 */
package org.evosuite.coverage.mutation;

import org.evosuite.Properties;
import org.evosuite.ga.archive.Archive;
import org.evosuite.testcase.ExecutableChromosome;
import org.evosuite.testcase.TestChromosome;
import org.evosuite.testcase.TestFitnessFunction;
import org.evosuite.testcase.execution.ExecutionResult;
import org.evosuite.testsuite.AbstractTestSuiteChromosome;
import org.evosuite.testsuite.TestSuiteChromosome;

import java.util.*;
import java.util.Map.Entry;

/**
 * 

* OnlyMutationSuiteFitness class. *

* * @author fraser */ public class OnlyMutationSuiteFitness extends MutationSuiteFitness { private static final long serialVersionUID = -8194940669364526758L; /* (non-Javadoc) * @see org.evosuite.ga.FitnessFunction#getFitness(org.evosuite.ga.Chromosome) */ /** {@inheritDoc} */ @Override public double getFitness( AbstractTestSuiteChromosome individual) { /** * e.g. classes with only static constructors */ if (this.numMutants == 0) { updateIndividual(this, individual, 0.0); ((TestSuiteChromosome) individual).setCoverage(this, 1.0); ((TestSuiteChromosome) individual).setNumOfCoveredGoals(this, 0); return 0.0; } List results = runTestSuite(individual); double fitness = 0.0; Map mutant_distance = new LinkedHashMap(); Set touchedMutants = new LinkedHashSet(); for (ExecutionResult result : results) { // Using private reflection can lead to false positives // that represent unrealistic behaviour. Thus, we only // use reflection for basic criteria, not for mutation if (result.hasTimeout() || result.hasTestException() || result.calledReflection()) { continue; } touchedMutants.addAll(result.getTrace().getTouchedMutants()); Map touchedMutantsDistances = result.getTrace().getMutationDistances(); if (touchedMutantsDistances.isEmpty()) { // if 'result' does not touch any mutant, no need to continue continue; } TestChromosome test = new TestChromosome(); test.setTestCase(result.test); test.setLastExecutionResult(result); test.setChanged(false); Iterator> it = this.mutantMap.entrySet().iterator(); while (it.hasNext()) { Entry entry = it.next(); int mutantID = entry.getKey(); TestFitnessFunction goal = entry.getValue(); double fit = 0.0; if (touchedMutantsDistances.containsKey(mutantID)) { fit = touchedMutantsDistances.get(mutantID); if (!mutant_distance.containsKey(mutantID)) { mutant_distance.put(mutantID, fit); } else { mutant_distance.put(mutantID, Math.min(mutant_distance.get(mutantID), fit)); } } else { fit = goal.getFitness(test, result); // archive is updated by the TestFitnessFunction class } if (fit == 0.0) { test.getTestCase().addCoveredGoal(goal); // update list of covered goals this.toRemoveMutants.add(mutantID); // goal to not be considered by the next iteration of the evolutionary algorithm } if (Properties.TEST_ARCHIVE) { Archive.getArchiveInstance().updateArchive(goal, test, fit); } } } // Second objective: touch all mutants? fitness += MutationPool.getMutantCounter() - touchedMutants.size(); int covered = this.removedMutants.size(); for (Double distance : mutant_distance.values()) { if (distance < 0) { logger.warn("Distance is " + distance + " / " + Integer.MAX_VALUE + " / " + Integer.MIN_VALUE); distance = 0.0; // FIXXME } fitness += normalize(distance); if (distance == 0.0) covered++; } updateIndividual(this, individual, fitness); ((TestSuiteChromosome) individual).setCoverage(this, (double) covered / (double) this.numMutants); ((TestSuiteChromosome) individual).setNumOfCoveredGoals(this, covered); return fitness; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy