All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.evosuite.ga.FitnessFunction Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
 * contributors
 *
 * This file is part of EvoSuite.
 *
 * EvoSuite is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3.0 of the License, or
 * (at your option) any later version.
 *
 * EvoSuite is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EvoSuite. If not, see .
 */
package org.evosuite.ga;

import java.io.Serializable;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Abstract base class of fitness functions
 * 
 * @author Gordon Fraser
 */
public abstract class FitnessFunction implements Serializable {

	private static final long serialVersionUID = -8876797554111396910L;

	/** Constant logger */
	protected static final Logger logger = LoggerFactory.getLogger(FitnessFunction.class);

	/**
	 * Make sure that the individual gets to know about its fitness
	 * 
	 * @param individual
	 *            a {@link org.evosuite.ga.Chromosome} object.
	 * @param fitness
	 *            a double.
	 */
	protected void updateIndividual(FitnessFunction ff, T individual, double fitness) {
		individual.setFitness(ff, fitness);
		// the following assumes updateIndividual is called from a 'getFitness' method,
		// which seems to be case for all classes that extends 'FitnessFunction'
		individual.increaseNumberOfEvaluations();
	}

	/**
	 * If the fitness function as an archive, returns the best individual in the archive.
	 * returns null otherwise
	 * @return
	 */
	public T getBestStoredIndividual(){
		return null;
	}
	
	/**
	 * Calculate and set fitness function #TODO the 'set fitness' part should be
	 * done by some abstract super class of all FitnessFunctions
	 * 
	 * @param individual
	 *            a {@link org.evosuite.ga.Chromosome} object.
	 * @return new fitness
	 */
	public abstract double getFitness(T individual);

	/**
	 * Normalize a value using Andrea's normalization function
	 * 
	 * @param value
	 *            a double.
	 * @return a double.
	 * @throws java.lang.IllegalArgumentException
	 *             if any.
	 */
	public static double normalize(double value) throws IllegalArgumentException {
		if (value < 0d) {
			throw new IllegalArgumentException("Values to normalize cannot be negative");
		}
		if (Double.isInfinite(value)) {
			return 1.0;
		}
		return value / (1.0 + value);
	}

	/**
	 * Do we need to maximize, or minimize this function?
	 * 
	 * @return a boolean.
	 */
	public abstract boolean isMaximizationFunction();
	
	/**
	 * if the fitness function contains an archive, updates the archive and the fitness values of the population, and returns true.
	 * if the fitness function doesn't contain an archive, return false.
	 * 
	 * This method has to be invoked after each generation.
	 * @return
	 */
	public boolean updateCoveredGoals(){
		return false;
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy