org.evosuite.ga.metaheuristics.NSGAII Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import org.evosuite.Properties;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.FitnessFunction;
import org.evosuite.ga.comparators.CrowdingComparator;
import org.evosuite.ga.comparators.DominanceComparator;
import org.evosuite.ga.comparators.SortByFitness;
import org.evosuite.utils.Randomness;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* NSGA-II implementation
*
* @article{Deb:2002,
author = {Deb, K. and Pratap, A. and Agarwal, S. and Meyarivan, T.},
title = {{A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II}},
journal = {Trans. Evol. Comp},
issue_date = {April 2002},
volume = {6},
number = {2},
month = apr,
year = {2002},
issn = {1089-778X},
pages = {182--197},
numpages = {16},
url = {http://dx.doi.org/10.1109/4235.996017},
doi = {10.1109/4235.996017},
acmid = {2221582},
publisher = {IEEE Press},
address = {Piscataway, NJ, USA}}
*
* @author José Campos
*/
public class NSGAII
extends GeneticAlgorithm
{
private static final long serialVersionUID = 146182080947267628L;
private static final Logger logger = LoggerFactory.getLogger(NSGAII.class);
private DominanceComparator dc;
/**
* Constructor
*
* @param factory a {@link org.evosuite.ga.ChromosomeFactory} object
*/
public NSGAII(ChromosomeFactory factory)
{
super(factory);
this.dc = new DominanceComparator();
}
/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
protected void evolve()
{
// Create the offSpring population
List offspringPopulation = new ArrayList(population.size());
// execute binary tournment selection, crossover, and mutation to
// create a offspring population Qt of size N
for (int i = 0; i < (population.size() / 2); i++)
{
// Selection
T parent1 = selectionFunction.select(population);
T parent2 = selectionFunction.select(population);
// Crossover
T offspring1 = (T) parent1.clone();
T offspring2 = (T) parent2.clone();
try {
if (Randomness.nextDouble() <= Properties.CROSSOVER_RATE)
crossoverFunction.crossOver(offspring1, offspring2);
}
catch (Exception e) {
logger.info("CrossOver failed");
}
// Mutation
if (Randomness.nextDouble() <= Properties.MUTATION_RATE) {
notifyMutation(offspring1);
offspring1.mutate();
notifyMutation(offspring2);
offspring2.mutate();
}
// Evaluate
for (final FitnessFunction ff : this.getFitnessFunctions()) {
ff.getFitness(offspring1);
notifyEvaluation(offspring1);
ff.getFitness(offspring2);
notifyEvaluation(offspring2);
}
offspringPopulation.add(offspring1);
offspringPopulation.add(offspring2);
}
// Create the population union of Population and offSpring
List union = union(population, offspringPopulation);
// Ranking the union
List> ranking = fastNonDominatedSort(union);
int remain = population.size();
int index = 0;
List front = null;
population.clear();
// Obtain the next front
front = ranking.get(index);
while ((remain > 0) && (remain >= front.size())) {
// Assign crowding distance to individuals
crowingDistanceAssignment(front);
// Add the individuals of this front
for (int k = 0; k < front.size(); k++)
population.add(front.get(k));
// Decrement remain
remain = remain - front.size();
// Obtain the next front
index++;
if (remain > 0)
front = ranking.get(index);
}
// Remain is less than front(index).size, insert only the best one
if (remain > 0) {
// front contains individuals to insert
crowingDistanceAssignment(front);
Collections.sort(front, new CrowdingComparator(true));
for (int k = 0; k < remain; k++)
population.add(front.get(k));
remain = 0;
}
//archive // TODO does it make any sense to use an archive with NSGA-II?
/*updateFitnessFunctionsAndValues();
for (T t : population) {
if(t.isToBeUpdated()){
for (FitnessFunction fitnessFunction : fitnessFunctions) {
fitnessFunction.getFitness(t);
}
t.isToBeUpdated(false);
}
}*/
//
currentIteration++;
}
/** {@inheritDoc} */
@Override
public void initializePopulation()
{
logger.info("executing initializePopulation function");
notifySearchStarted();
currentIteration = 0;
// Create a random parent population P0
this.generateInitialPopulation(Properties.POPULATION);
this.notifyIteration();
}
/** {@inheritDoc} */
@Override
public void generateSolution()
{
logger.info("executing generateSolution function");
if (population.isEmpty())
initializePopulation();
while (!isFinished())
{
evolve();
this.notifyIteration();
this.writeIndividuals(this.population);
}
notifySearchFinished();
}
protected List union(List population, List offspringPopulation)
{
int newSize = population.size() + offspringPopulation.size();
if (newSize < Properties.POPULATION)
newSize = Properties.POPULATION;
// Create a new population
List union = new ArrayList(newSize);
for (int i = 0; i < population.size(); i++)
union.add(population.get(i));
for (int i = population.size(); i < (population.size() + offspringPopulation.size()); i++)
union.add(offspringPopulation.get(i - population.size()));
return union;
}
/**
* Fast nondominated sorting
*
* @param population Population to sort using domination
* @return Return the list of identified fronts
*/
@SuppressWarnings("unchecked")
protected List> fastNonDominatedSort(List union)
{
// dominateMe[i] contains the number of individuals dominating i
int[] dominateMe = new int[union.size()];
// iDominate[k] contains the list of individuals dominated by k
List[] iDominate = new List[union.size()];
// front[i] contains the list of individuals belonging to the front i
List[] front = new List[union.size() + 1];
// flagDominate is an auxiliar variable
int flagDominate;
// Initialize the fronts
for (int i = 0; i < front.length; i++)
front[i] = new LinkedList();
// Fast non dominated sorting algorithm
for (int p = 0; p < union.size(); p++)
{
// Initialize the list of individuals that i dominate and the number
// of individuals that dominate me
iDominate[p] = new LinkedList();
dominateMe[p] = 0;
}
for (int p = 0; p < (union.size() - 1); p++)
{
// for all q individuals, calculate if p dominates q or vice versa
for (int q = p + 1; q < union.size(); q++)
{
//flagDominate = dominanceComparator(union.get(p), union.get(q));
flagDominate = dc.compare(union.get(p), union.get(q));
if (flagDominate == -1)
{
iDominate[p].add(q);
dominateMe[q]++;
}
else if (flagDominate == 1)
{
iDominate[q].add(p);
dominateMe[p]++;
}
}
// if nobody dominates p, p belongs to the first front
}
for (int p = 0; p < union.size(); p++)
{
if (dominateMe[p] == 0)
{
front[0].add(p);
union.get(p).setRank(0);
}
}
// obtain the rest of fronts
int i = 0;
Iterator it1, it2;
while (front[i].size() != 0)
{
i++;
it1 = front[i - 1].iterator();
while (it1.hasNext())
{
it2 = iDominate[it1.next()].iterator();
while (it2.hasNext())
{
int index = it2.next();
dominateMe[index]--;
if (dominateMe[index] == 0)
{
front[i].add(index);
union.get(index).setRank(i);
}
}
}
}
List> ranking = new ArrayList>(i);
// 0,1,2,....,i-1 are front, then i fronts
for (int j = 0; j < i; j++)
{
List f = new ArrayList(front[j].size());
it1 = front[j].iterator();
while (it1.hasNext())
f.add(union.get(it1.next()));
ranking.add(f);
}
return ranking;
}
protected void crowingDistanceAssignment(List f)
{
int size = f.size();
if (size == 0)
return ;
if (size == 1) {
f.get(0).setDistance(Double.POSITIVE_INFINITY);
return;
}
if (size == 2) {
f.get(0).setDistance(Double.POSITIVE_INFINITY);
f.get(1).setDistance(Double.POSITIVE_INFINITY);
return;
}
// use a new Population List to avoid altering the original Population
List front = new ArrayList(size);
front.addAll(f);
for (int i = 0; i < size; i++)
front.get(i).setDistance(0.0);
double objetiveMaxn;
double objetiveMinn;
double distance;
for (final FitnessFunction> ff : this.getFitnessFunctions())
{
// Sort the population by Fit n
Collections.sort(front, new SortByFitness(ff, true));
objetiveMinn = front.get(0).getFitness(ff);
objetiveMaxn = front.get(front.size() - 1).getFitness(ff);
// set crowding distance
front.get(0).setDistance(Double.POSITIVE_INFINITY);
front.get(size - 1).setDistance(Double.POSITIVE_INFINITY);
for (int j = 1; j < size - 1; j++)
{
distance = front.get(j + 1).getFitness(ff) - front.get(j - 1).getFitness(ff);
distance = distance / (objetiveMaxn - objetiveMinn);
distance += front.get(j).getDistance();
front.get(j).setDistance(distance);
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy