org.evosuite.ga.metaheuristics.SteadyStateGA Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics;
import org.evosuite.Properties;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.ConstructionFailedException;
import org.evosuite.ga.FitnessFunction;
import org.evosuite.utils.Randomness;
/**
* Alternative version of steady state GA
*
* @author Gordon Fraser
*/
public class SteadyStateGA extends MonotonicGA {
private static final long serialVersionUID = 7301010503732698233L;
private final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(SteadyStateGA.class);
/**
* Generate a new search object
*
* @param factory a {@link org.evosuite.ga.ChromosomeFactory} object.
*/
public SteadyStateGA(ChromosomeFactory factory) {
super(factory);
}
/**
* {@inheritDoc}
*
* Perform one iteration of the search
*/
@SuppressWarnings("unchecked")
@Override
protected void evolve() {
logger.debug("Generating offspring");
currentIteration++;
T parent1 = selectionFunction.select(population);
T parent2 = selectionFunction.select(population);
T offspring1 = (T)parent1.clone();
T offspring2 = (T)parent2.clone();
try {
// Crossover
if (Randomness.nextDouble() <= Properties.CROSSOVER_RATE) {
crossoverFunction.crossOver(offspring1, offspring2);
}
// Mutation
notifyMutation(offspring1);
offspring1.mutate();
notifyMutation(offspring2);
offspring2.mutate();
if(offspring1.isChanged()) {
offspring1.updateAge(currentIteration);
}
if(offspring2.isChanged()) {
offspring2.updateAge(currentIteration);
}
} catch (ConstructionFailedException e) {
logger.info("CrossOver/Mutation failed");
return;
}
// The two offspring replace the parents if and only if one of
// the offspring is not worse than the best parent.
for (FitnessFunction fitnessFunction : fitnessFunctions) {
fitnessFunction.getFitness(offspring1);
notifyEvaluation(offspring1);
fitnessFunction.getFitness(offspring2);
notifyEvaluation(offspring2);
}
// if (replacement_function.keepOffspring(parent1, parent2, offspring1,
if (!Properties.PARENT_CHECK
|| keepOffspring(parent1, parent2, offspring1, offspring2)) {
logger.debug("Keeping offspring");
if (!isTooLong(offspring1)) {
population.remove(parent1);
population.add(offspring1);
}
if (!isTooLong(offspring2)) {
population.remove(parent2);
population.add(offspring2);
}
} else {
logger.debug("Keeping parents");
}
updateFitnessFunctionsAndValues();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy