org.evosuite.ga.metaheuristics.mulambda.MuLambdaEA Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics.mulambda;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.FitnessFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* (Mu, Lambda) EA
*
* @author José Campos
*/
public class MuLambdaEA extends AbstractMuLambda {
private static final long serialVersionUID = -1104094637643130537L;
private static final Logger logger = LoggerFactory.getLogger(MuLambdaEA.class);
public MuLambdaEA(ChromosomeFactory factory, int mu, int lambda) {
super(factory, mu, lambda);
}
/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
protected void evolve() {
List offspring = new ArrayList(this.lambda);
// create new offspring by mutating current population
for (int i = 0; i < this.mu; i++) {
for (int j = 0; j < this.lambda / this.mu; j++) {
T t = (T) this.population.get(i).clone();
do {
this.notifyMutation(t);
t.mutate();
} while (!t.isChanged());
offspring.add(t);
}
}
// update fitness values of offspring
for (T t : offspring) {
for (FitnessFunction fitnessFunction : this.fitnessFunctions) {
fitnessFunction.getFitness(t);
this.notifyEvaluation(t);
}
}
if (this.getFitnessFunction().isMaximizationFunction()) {
// this if condition assumes *all* fitness functions are either to be maximized or to be
// minimized
// sort offspring from the one with the highest fitness value to the one with the lowest
// fitness value
Collections.sort(offspring, Collections.reverseOrder());
} else {
// sort offspring from the one with the lowest fitness value to the one with the highest
// fitness value
Collections.sort(offspring);
}
// replace mu (i.e., population) out of lambda (i.e., offspring)
for (int i = 0; i < this.population.size(); i++) {
logger.debug("replacing " + this.population.get(i).getFitness() + " with "
+ offspring.get(i).getFitness());
this.population.set(i, offspring.get(i));
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy