org.evosuite.ga.metaheuristics.mulambda.MuPlusLambdaEA Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.ga.metaheuristics.mulambda;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.ChromosomeFactory;
import org.evosuite.ga.FitnessFunction;
import java.util.ArrayList;
import java.util.List;
/**
* (Mu + Lambda) EA
*
* @author José Campos
*/
public class MuPlusLambdaEA extends AbstractMuLambda {
private static final long serialVersionUID = -8685698059226067598L;
public MuPlusLambdaEA(ChromosomeFactory factory, int mu, int lambda) {
super(factory, mu, lambda);
}
/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
protected void evolve() {
List offsprings = new ArrayList(this.lambda);
// create new offsprings by mutating current population
for (int i = 0; i < this.mu; i++) {
for (int j = 0; j < this.lambda / this.mu; j++) {
T offspring = (T) this.population.get(i).clone();
this.notifyMutation(offspring);
do {
offspring.mutate();
} while (!offspring.isChanged());
offsprings.add(offspring);
}
}
// update fitness values of offsprings
for (T offspring : offsprings) {
for (FitnessFunction fitnessFunction : this.fitnessFunctions) {
fitnessFunction.getFitness(offspring);
this.notifyEvaluation(offspring);
}
}
for (int i = 0; i < this.population.size(); i++) {
T bestOffspring = this.population.get(i);
boolean offspring_is_better = false;
for (T offspring : offsprings) {
if (isBetterOrEqual(offspring, bestOffspring)) {
bestOffspring = offspring;
offspring_is_better = true;
}
}
if (offspring_is_better) {
// replace individual with a better one
this.population.set(i, bestOffspring);
// to prevent a population with only equal and dominant
// individuals, here the best offspring is remove so that
// it cannot be chosen again. in case of 1+1 and 1+Lambda EA
// this optimization has no effect.
offsprings.remove(bestOffspring);
}
this.population.get(i).updateAge(this.currentIteration);
}
assert this.population.size() == this.mu;
this.currentIteration++;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy