org.evosuite.strategy.RegressionSuiteStrategy Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.strategy;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.List;
import org.evosuite.Properties;
import org.evosuite.Properties.Criterion;
import org.evosuite.TestGenerationContext;
import org.evosuite.coverage.CoverageCriteriaAnalyzer;
import org.evosuite.coverage.TestFitnessFactory;
import org.evosuite.coverage.branch.BranchCoverageSuiteFitness;
import org.evosuite.ga.FitnessFunction;
import org.evosuite.ga.metaheuristics.GeneticAlgorithm;
import org.evosuite.ga.stoppingconditions.MaxStatementsStoppingCondition;
import org.evosuite.ga.stoppingconditions.StoppingCondition;
import org.evosuite.ga.stoppingconditions.ZeroFitnessStoppingCondition;
import org.evosuite.junit.JUnitAnalyzer;
import org.evosuite.regression.RegressionAssertionCounter;
import org.evosuite.regression.RegressionMeasure;
import org.evosuite.regression.RegressionTestChromosome;
import org.evosuite.regression.RegressionTestChromosomeFactory;
import org.evosuite.regression.RegressionTestSuiteChromosome;
import org.evosuite.result.TestGenerationResultBuilder;
import org.evosuite.rmi.ClientServices;
import org.evosuite.rmi.service.ClientState;
import org.evosuite.statistics.RuntimeVariable;
import org.evosuite.testcase.TestCase;
import org.evosuite.testcase.TestChromosome;
import org.evosuite.testcase.TestFitnessFunction;
import org.evosuite.testcase.execution.ExecutionTracer;
import org.evosuite.testsuite.TestSuiteChromosome;
import org.evosuite.testsuite.TestSuiteFitnessFunction;
import org.evosuite.utils.ArrayUtil;
import org.evosuite.utils.LoggingUtils;
import org.evosuite.utils.Randomness;
public class RegressionSuiteStrategy extends TestGenerationStrategy {
public final static ZeroFitnessStoppingCondition
zero_fitness = new ZeroFitnessStoppingCondition();
@Override
public TestSuiteChromosome generateTests() {
track(RuntimeVariable.Total_Goals, 0);
track(RuntimeVariable.Generated_Assertions, 0);
track(RuntimeVariable.Coverage_Old, 0);
track(RuntimeVariable.Coverage_New, 0);
track(RuntimeVariable.Exception_Difference, 0);
track(RuntimeVariable.State_Distance, 0);
track(RuntimeVariable.Testsuite_Diversity, 0);
// Disable test archive
Properties.TEST_ARCHIVE = false;
// Disable functional mocking stuff (due to incompatibilities)
Properties.P_FUNCTIONAL_MOCKING = 0;
Properties.FUNCTIONAL_MOCKING_INPUT_LIMIT = 0;
Properties.FUNCTIONAL_MOCKING_PERCENT = 0;
// Regression random strategy switch.
if (Properties.REGRESSION_FITNESS == RegressionMeasure.RANDOM) {
return generateRandomRegressionTests();
}
LoggingUtils.getEvoLogger().info(
"* Setting up search algorithm for REGRESSION suite generation");
PropertiesSuiteGAFactory algorithmFactory = new PropertiesSuiteGAFactory();
GeneticAlgorithm> algorithm = algorithmFactory.getSearchAlgorithm();
if (Properties.SERIALIZE_GA || Properties.CLIENT_ON_THREAD) {
TestGenerationResultBuilder.getInstance().setGeneticAlgorithm(algorithm);
}
long startTime = System.currentTimeMillis() / 1000;
Properties.CRITERION = new Criterion[]{Criterion.REGRESSION};
// What's the search target
List fitnessFunctions = getFitnessFunctions();
// TODO: Argh, generics.
algorithm.addFitnessFunctions((List) fitnessFunctions);
//algorithm.addListener(regressionMonitor);
if (ArrayUtil.contains(Properties.CRITERION, Criterion.DEFUSE)
|| ArrayUtil.contains(Properties.CRITERION, Criterion.ALLDEFS)
|| ArrayUtil
.contains(Properties.CRITERION, Criterion.STATEMENT)
|| ArrayUtil.contains(Properties.CRITERION, Criterion.RHO)
|| ArrayUtil
.contains(Properties.CRITERION, Criterion.AMBIGUITY)) {
ExecutionTracer.enableTraceCalls();
}
// TODO: why it was only if "analyzing"???
// if (analyzing)
algorithm.resetStoppingConditions();
List goals = getGoals(true);
// List bestSuites = new
// ArrayList();
TestSuiteChromosome bestSuites = new TestSuiteChromosome();
RegressionTestSuiteChromosome best = null;
if (!Properties.STOP_ZERO || !goals.isEmpty()) {
// logger.warn("performing search ... ############################################################");
// Perform search
LoggingUtils.getEvoLogger().info("* Using seed {}", Randomness.getSeed());
LoggingUtils.getEvoLogger().info("* Starting evolution");
ClientServices.getInstance().getClientNode().changeState(ClientState.SEARCH);
algorithm.generateSolution();
best = (RegressionTestSuiteChromosome) algorithm.getBestIndividual();
// List tmpTestSuiteList = new
// ArrayList();
for (TestCase t : best.getTests()) {
bestSuites.addTest(t);
}
// bestSuites = (List) ga.getBestIndividuals();
if (bestSuites.size() == 0) {
LoggingUtils.getEvoLogger().warn("Could not find any suiteable chromosome");
return bestSuites;
}
} else {
zeroFitness.setFinished();
bestSuites = new TestSuiteChromosome();
for (FitnessFunction> ff : bestSuites.getFitnessValues().keySet()) {
bestSuites.setCoverage(ff, 1.0);
}
}
long end_time = System.currentTimeMillis() / 1000;
goals = getGoals(false); //recalculated now after the search, eg to handle exception fitness
track(RuntimeVariable.Total_Goals, goals.size());
// Newline after progress bar
if (Properties.SHOW_PROGRESS) {
LoggingUtils.getEvoLogger().info("");
}
String text = " statements, best individual has fitness: ";
if (bestSuites.size() > 1) {
text = " statements, best individuals have fitness: ";
}
LoggingUtils.getEvoLogger().info(
"* Search finished after "
+ (end_time - startTime)
+ "s and "
+ algorithm.getAge()
+ " generations, "
+ MaxStatementsStoppingCondition
.getNumExecutedStatements() + text
+ ((best != null) ? best.getFitness() : ""));
// progressMonitor.updateStatus(33);
// progressMonitor.updateStatus(66);
if (Properties.COVERAGE) {
for (Properties.Criterion pc : Properties.CRITERION) {
CoverageCriteriaAnalyzer.analyzeCoverage(bestSuites, pc); // FIXME: can
}
// we send
// all
// bestSuites?
}
// progressMonitor.updateStatus(99);
int number_of_test_cases = 0;
int totalLengthOfTestCases = 0;
double coverage = 0.0;
// for (TestSuiteChromosome tsc : bestSuites) {
number_of_test_cases += bestSuites.size();
totalLengthOfTestCases += bestSuites.totalLengthOfTestCases();
coverage += bestSuites.getCoverage();
// }
// coverage = coverage / ((double)bestSuites.size());
if (ArrayUtil.contains(Properties.CRITERION, Criterion.MUTATION)
|| ArrayUtil.contains(Properties.CRITERION, Criterion.STRONGMUTATION)) {
// SearchStatistics.getInstance().mutationScore(coverage);
}
// StatisticsSender.executedAndThenSendIndividualToMaster(bestSuites);
// // FIXME: can we send all bestSuites?
// statistics.iteration(ga);
// statistics.minimized(bestSuites.get(0)); // FIXME: can we send all
// bestSuites?
LoggingUtils.getEvoLogger().info(
"* Generated " + number_of_test_cases
+ " tests with total length " + totalLengthOfTestCases);
// TODO: In the end we will only need one analysis technique
if (!Properties.ANALYSIS_CRITERIA.isEmpty()) {
// SearchStatistics.getInstance().addCoverage(Properties.CRITERION.toString(),
// coverage);
CoverageCriteriaAnalyzer.analyzeCriteria(bestSuites, Properties.ANALYSIS_CRITERIA);
// FIXME: can we send all bestSuites?
}
LoggingUtils.getEvoLogger().info("* Resulting test suite's coverage: "
+ NumberFormat.getPercentInstance().format(coverage));
algorithm.printBudget();
return bestSuites;
}
private TestSuiteChromosome generateRandomRegressionTests() {
LoggingUtils.getEvoLogger().info("* Using RANDOM regression test generation");
if (Properties.KEEP_REGRESSION_ARCHIVE) {
Properties.TEST_ARCHIVE = true;
}
RegressionTestSuiteChromosome suite = new RegressionTestSuiteChromosome();
PropertiesSuiteGAFactory algorithmFactory = new PropertiesSuiteGAFactory();
GeneticAlgorithm> suiteGA = algorithmFactory.getSearchAlgorithm();
//statistics.searchStarted(suiteGA);
BranchCoverageSuiteFitness branchCoverageSuiteFitness = new BranchCoverageSuiteFitness(
TestGenerationContext.getInstance().getClassLoaderForSUT());
//regressionMonitor.searchStarted(suiteGA);
RegressionTestChromosomeFactory factory = new RegressionTestChromosomeFactory();
LoggingUtils.getEvoLogger().warn("*** generating RANDOM regression tests");
// TODO: Shutdown hook?
List goals = getGoals(true);
track(RuntimeVariable.Total_Goals, goals.size());
StoppingCondition stoppingCondition = getStoppingCondition();
// fitnessFunction.getFitness(suite);
int totalTestCount = 0;
int usefulTestCount = 0;
int simulatedAge = 0;
int numAssertions = 0;
int executedStatemets = 0;
boolean firstTry = true;
// Properties.REGRESSION_RANDOM_STRATEGY:
// 0: skip evaluation after first find, dont keep tests
// 1: dont skip evaluation after first find, dont keep tests
// 2: dont skip evaluation after first find, keep tests
// 3: skip evaluation after first find, keep tests [default]
long startTime = System.currentTimeMillis();
while (!stoppingCondition.isFinished() || (numAssertions != 0)) {
if (numAssertions == 0 || Properties.REGRESSION_RANDOM_STRATEGY == 1
|| Properties.REGRESSION_RANDOM_STRATEGY == 2) {
RegressionTestChromosome test = factory.getChromosome();
RegressionTestSuiteChromosome clone = new RegressionTestSuiteChromosome();
clone.addTest(test);
List testCases = clone.getTests();
// fitnessFunction.getFitness(clone);
/*
* logger.debug("Old fitness: {}, new fitness: {}",
* suite.getFitness(), clone.getFitness());
*/
executedStatemets += test.size();
numAssertions = RegressionAssertionCounter.getNumAssertions(clone);
if (Properties.KEEP_REGRESSION_ARCHIVE) {
branchCoverageSuiteFitness.getFitness(clone.getTestSuite());
}
if (numAssertions > 0) {
LoggingUtils.getEvoLogger().warn("Generated test with {} assertions.", numAssertions);
}
totalTestCount++;
if (numAssertions > 0) {
numAssertions = 0;
//boolean compilable = JUnitAnalyzer.verifyCompilationAndExecution(testCases);
JUnitAnalyzer.removeTestsThatDoNotCompile(testCases);
JUnitAnalyzer.handleTestsThatAreUnstable(testCases);
if (testCases.size() > 0) {
clone = new RegressionTestSuiteChromosome();
for (TestCase t : testCases) {
RegressionTestChromosome rtc = new RegressionTestChromosome();
if (t.isUnstable()) {
continue;
}
TestChromosome tc = new TestChromosome();
tc.setTestCase(t);
rtc.setTest(tc);
clone.addTest(rtc);
}
//test.set
//clone.addTest(testCases);
numAssertions = RegressionAssertionCounter.getNumAssertions(
clone, false, false);
LoggingUtils.getEvoLogger().warn("Keeping {} assertions.", numAssertions);
if (numAssertions > 0) {
usefulTestCount++;
suite.addTest(test);
}
} else {
LoggingUtils.getEvoLogger().warn("ignored assertions. tests were removed.");
}
}
} else {
if (numAssertions > 0) {
break;
}
/*
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
*/
}
// regressionMonitor.fitnessEvaluation(suite);
// regressionMonitor.iteration(suiteGA);
if (firstTry || (System.currentTimeMillis() - startTime) >= 4000) {
startTime = System.currentTimeMillis();
simulatedAge++;
firstTry = false;
}
}
// regressionMonitor.searchFinished(suiteGA);
LoggingUtils.getEvoLogger().warn("*** Random test generation finished.");
LoggingUtils.getEvoLogger().warn("*=*=*=* Total tests: {} | Tests with assertion: {}",
totalTestCount, usefulTestCount);
//statistics.searchFinished(suiteGA);
zero_fitness.setFinished();
LoggingUtils.getEvoLogger().info("* Generated " + suite.size() + " tests with total length "
+ suite.totalLengthOfTestCases());
goals = getGoals(false);
track(RuntimeVariable.Total_Goals, goals.size());
suiteGA.printBudget();
if (!(Properties.REGRESSION_RANDOM_STRATEGY == 2
|| Properties.REGRESSION_RANDOM_STRATEGY == 3)) {
suite = new RegressionTestSuiteChromosome();
}
TestSuiteChromosome bestSuites = new TestSuiteChromosome();
for (TestCase t : suite.getTests()) {
bestSuites.addTest(t);
}
return bestSuites;
}
private List getGoals(boolean verbose) {
List> goalFactories = getFitnessFactories();
//LoggingUtils.getEvoLogger().warn("Factories: {}" , goalFactories);
List goals = new ArrayList<>();
if (goalFactories.size() == 1) {
TestFitnessFactory extends TestFitnessFunction> factory = goalFactories.iterator().next();
goals.addAll(factory.getCoverageGoals());
if (verbose) {
LoggingUtils.getEvoLogger()
.info("* Total number of test goals: {}", factory.getCoverageGoals().size());
}
} else {
if (verbose) {
LoggingUtils.getEvoLogger().info("* Total number of test goals: ");
}
for (TestFitnessFactory extends TestFitnessFunction> goalFactory : goalFactories) {
goals.addAll(goalFactory.getCoverageGoals());
if (verbose) {
LoggingUtils.getEvoLogger().info(
" - "
+ goalFactory.getClass().getSimpleName()
.replace("CoverageFactory", "")
+ " "
+ goalFactory.getCoverageGoals().size());
}
}
}
return goals;
}
/**
* Helper for tracking output values
*/
private void track(RuntimeVariable variable, Object value) {
ClientServices.getInstance().getClientNode().trackOutputVariable(variable, value);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy