org.evosuite.testsuite.similarity.DiversityObserver Maven / Gradle / Ivy
The newest version!
/**
* Copyright (C) 2010-2018 Gordon Fraser, Andrea Arcuri and EvoSuite
* contributors
*
* This file is part of EvoSuite.
*
* EvoSuite is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3.0 of the License, or
* (at your option) any later version.
*
* EvoSuite is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EvoSuite. If not, see .
*/
package org.evosuite.testsuite.similarity;
import org.evosuite.ga.Chromosome;
import org.evosuite.ga.metaheuristics.GeneticAlgorithm;
import org.evosuite.ga.metaheuristics.SearchListener;
import org.evosuite.rmi.ClientServices;
import org.evosuite.statistics.RuntimeVariable;
import org.evosuite.testcase.DefaultTestCase;
import org.evosuite.testcase.TestCase;
import org.evosuite.testcase.statements.*;
import org.evosuite.testsuite.TestSuiteChromosome;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.List;
/**
* Created by gordon on 18/12/2015.
*/
public class DiversityObserver implements SearchListener {
private static final Logger logger = LoggerFactory.getLogger(DiversityObserver.class);
@Override
public void iteration(GeneticAlgorithm> algorithm) {
List individuals = (List) algorithm.getPopulation();
double diversity = 0.0;
int numComparisons = 0;
for(int i = 0; i < individuals.size() - 1; i++) {
for(int j = i+1; j < individuals.size(); j++) {
double pairDiversity = getSuiteSimilarity(individuals.get(i), individuals.get(j));
logger.debug("Adding diversity of pair "+i+", "+j+" of "+pairDiversity);
diversity += pairDiversity;
numComparisons += 1;
}
}
diversity = 1.0 - diversity/numComparisons;
logger.info("Resulting diversity for "+numComparisons +" pairs: "+diversity);
ClientServices.getInstance().getClientNode().trackOutputVariable(RuntimeVariable.DiversityTimeline, diversity);
}
public static final int GAP_PENALTY = -2;
/**
* Naive similarity comparison between suites simply consists of merging all tests to a single test
* for each suite, and then comparing these tests
*
* @param suite1
* @param suite2
* @return
*/
public static double getSuiteSimilarity(TestSuiteChromosome suite1, TestSuiteChromosome suite2) {
TestCase test1 = new DefaultTestCase();
for(TestCase test : suite1.getTests()) {
for(Statement s : test) {
// These are not valid tests as the variables still point to the original test
// but that doesn't matter as we're not executing the test
test1.addStatement(s);
}
}
TestCase test2 = new DefaultTestCase();
for(TestCase test : suite2.getTests()) {
for(Statement s : test) {
test2.addStatement(s);
}
}
return getNeedlemanWunschScore(test1, test2);
}
// TODO: Similarity based on vectors of types of calls
/**
* Sequence alignment based distance
* @param test1
* @param test2
* @return
*/
public static double getNeedlemanWunschScore(TestCase test1, TestCase test2) {
int[][] matrix = new int[test1.size()+1][test2.size()+1];
for(int i = 0; i <= test1.size(); i++)
matrix[i][0] = GAP_PENALTY * i;
for(int i = 0; i <= test2.size(); i++)
matrix[0][i] = GAP_PENALTY * i;
for(int x = 1; x <= test1.size(); x++) {
for(int y = 1; y <= test2.size(); y++) {
int upLeft = matrix[x-1][y-1] + getStatementSimilarity(test1.getStatement(x-1), test2.getStatement(y-1));
int insert = matrix[x-1][y] + GAP_PENALTY;
int delete = matrix[x][y-1] + GAP_PENALTY;
matrix[x][y]= Math.max(upLeft, Math.max(delete, insert));
}
}
// printMatrix(matrix);
// Normalize
double max = Math.max(test1.size(), test2.size()) * Math.abs(GAP_PENALTY); // max +
if(max == 0.0) {
return 0.0;
}
return matrix[test1.size()][test2.size()] / max;
}
// matches are given +1, mismatches are given -
private static int getStatementSimilarity(Statement s1, Statement s2) {
int similarity = 0;
if(s1.getClass() == s2.getClass()) {
similarity += 1;
if(s1 instanceof ConstructorStatement) {
if(getUnderlyingType((ConstructorStatement) s1).equals(getUnderlyingType((ConstructorStatement) s2)))
similarity += 1;
} else if(s1 instanceof PrimitiveStatement) {
if(getUnderlyingType((PrimitiveStatement) s1).equals(getUnderlyingType((PrimitiveStatement) s2)))
similarity += 1;
} else if(s1 instanceof MethodStatement) {
if(getUnderlyingType((MethodStatement) s1).equals(getUnderlyingType((MethodStatement) s2)))
similarity += 1;
} else if(s1 instanceof FieldStatement) {
if(getUnderlyingType((FieldStatement) s1).equals(getUnderlyingType((FieldStatement) s2)))
similarity += 1;
}
// TOOD: If underlying type is the same, further benefit
}
else {
similarity = -2;
}
return similarity;
}
private static Class> getUnderlyingType(ConstructorStatement cs) {
return cs.getReturnClass();
}
private static Class> getUnderlyingType(MethodStatement ms) {
return ms.getMethod().getDeclaringClass();
}
private static Class> getUnderlyingType(FieldStatement fs) {
return fs.getField().getDeclaringClass();
}
private static Class> getUnderlyingType(PrimitiveStatement ps) {
return ps.getReturnClass();
}
public static void printMatrix(int[][] matrix) {
for(int x = 0; x < matrix.length; x++) {
for(int y = 0; y < matrix[x].length; y++) {
System.out.print(" "+matrix[x][y]);
}
System.out.println();
}
}
@Override
public void searchStarted(GeneticAlgorithm> algorithm) {
}
@Override
public void searchFinished(GeneticAlgorithm> algorithm) {
}
@Override
public void fitnessEvaluation(Chromosome individual) {
}
@Override
public void modification(Chromosome individual) {
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy