org.apache.xerces.impl.dv.xs.FloatDV Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of xercesImpl Show documentation
Show all versions of xercesImpl Show documentation
Xerces2 is the next generation of high performance, fully compliant XML parsers in the Apache Xerces family.
This new version of Xerces introduces the Xerces Native Interface (XNI), a complete framework for building
parser components and configurations that is extremely modular and easy to program. The Apache Xerces2 parser is
the reference implementation of XNI but other parser components, configurations, and parsers can be written
using the Xerces Native Interface. For complete design and implementation documents, refer to the XNI Manual.
Xerces2 is a fully conforming XML Schema 1.0 processor. A partial experimental implementation of the XML Schema
1.1 Structures and Datatypes Working Drafts (December 2009) and an experimental implementation of the XML Schema
Definition Language (XSD): Component Designators (SCD) Candidate Recommendation (January 2010) are provided for
evaluation. For more information, refer to the XML Schema page. Xerces2 also provides a complete implementation
of the Document Object Model Level 3 Core and Load/Save W3C Recommendations and provides a complete
implementation of the XML Inclusions (XInclude) W3C Recommendation. It also provides support for OASIS XML
Catalogs v1.1. Xerces2 is able to parse documents written according to the XML 1.1 Recommendation, except that
it does not yet provide an option to enable normalization checking as described in section 2.13 of this
specification. It also handles namespaces according to the XML Namespaces 1.1 Recommendation, and will correctly
serialize XML 1.1 documents if the DOM level 3 load/save APIs are in use.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.xerces.impl.dv.xs;
import org.apache.xerces.impl.dv.InvalidDatatypeValueException;
import org.apache.xerces.impl.dv.ValidationContext;
import org.apache.xerces.xs.datatypes.XSFloat;
/**
* Represent the schema type "float"
*
* @xerces.internal
*
* @author Neeraj Bajaj, Sun Microsystems, inc.
* @author Sandy Gao, IBM
*
* @version $Id: FloatDV.java 572095 2007-09-02 18:32:43Z mrglavas $
*/
public class FloatDV extends TypeValidator {
public short getAllowedFacets(){
return ( XSSimpleTypeDecl.FACET_PATTERN | XSSimpleTypeDecl.FACET_WHITESPACE | XSSimpleTypeDecl.FACET_ENUMERATION |XSSimpleTypeDecl.FACET_MAXINCLUSIVE |XSSimpleTypeDecl.FACET_MININCLUSIVE | XSSimpleTypeDecl.FACET_MAXEXCLUSIVE | XSSimpleTypeDecl.FACET_MINEXCLUSIVE );
}//getAllowedFacets()
//convert a String to Float form, we have to take care of cases specified in spec like INF, -INF and NaN
public Object getActualValue(String content, ValidationContext context) throws InvalidDatatypeValueException {
try{
return new XFloat(content);
} catch (NumberFormatException ex){
throw new InvalidDatatypeValueException("cvc-datatype-valid.1.2.1", new Object[]{content, "float"});
}
}//getActualValue()
// Can't call Float#compareTo method, because it's introduced in jdk 1.2
public int compare(Object value1, Object value2){
return ((XFloat)value1).compareTo((XFloat)value2);
}//compare()
//distinguishes between identity and equality for float datatype
//0.0 is equal but not identical to -0.0
public boolean isIdentical (Object value1, Object value2) {
if (value2 instanceof XFloat) {
return ((XFloat)value1).isIdentical((XFloat)value2);
}
return false;
}//isIdentical()
private static final class XFloat implements XSFloat {
private final float value;
public XFloat(String s) throws NumberFormatException {
if (DoubleDV.isPossibleFP(s)) {
value = Float.parseFloat(s);
}
else if ( s.equals("INF") ) {
value = Float.POSITIVE_INFINITY;
}
else if ( s.equals("-INF") ) {
value = Float.NEGATIVE_INFINITY;
}
else if ( s.equals("NaN") ) {
value = Float.NaN;
}
else {
throw new NumberFormatException(s);
}
}
public boolean equals(Object val) {
if (val == this)
return true;
if (!(val instanceof XFloat))
return false;
XFloat oval = (XFloat)val;
// NOTE: we don't distinguish 0.0 from -0.0
if (value == oval.value)
return true;
if (value != value && oval.value != oval.value)
return true;
return false;
}
public int hashCode() {
// This check is necessary because floatToIntBits(+0) != floatToIntBits(-0)
return (value == 0f) ? 0 : Float.floatToIntBits(value);
}
// NOTE: 0.0 is equal but not identical to -0.0
public boolean isIdentical (XFloat val) {
if (val == this) {
return true;
}
if (value == val.value) {
return (value != 0.0f ||
(Float.floatToIntBits(value) == Float.floatToIntBits(val.value)));
}
if (value != value && val.value != val.value)
return true;
return false;
}
private int compareTo(XFloat val) {
float oval = val.value;
// this < other
if (value < oval)
return -1;
// this > other
if (value > oval)
return 1;
// this == other
// NOTE: we don't distinguish 0.0 from -0.0
if (value == oval)
return 0;
// one of the 2 values or both is/are NaN(s)
if (value != value) {
// this = NaN = other
if (oval != oval)
return 0;
// this is NaN <> other
return INDETERMINATE;
}
// other is NaN <> this
return INDETERMINATE;
}
private String canonical;
public synchronized String toString() {
if (canonical == null) {
if (value == Float.POSITIVE_INFINITY)
canonical = "INF";
else if (value == Float.NEGATIVE_INFINITY)
canonical = "-INF";
else if (value != value)
canonical = "NaN";
// NOTE: we don't distinguish 0.0 from -0.0
else if (value == 0)
canonical = "0.0E1";
else {
// REVISIT: use the java algorithm for now, because we
// don't know what to output for 1.1f (which is no
// actually 1.1)
canonical = Float.toString(value);
// if it contains 'E', then it should be a valid schema
// canonical representation
if (canonical.indexOf('E') == -1) {
int len = canonical.length();
// at most 3 longer: E, -, 9
char[] chars = new char[len+3];
canonical.getChars(0, len, chars, 0);
// expected decimal point position
int edp = chars[0] == '-' ? 2 : 1;
// for non-zero integer part
if (value >= 1 || value <= -1) {
// decimal point position
int dp = canonical.indexOf('.');
// move the digits: ddd.d --> d.ddd
for (int i = dp; i > edp; i--) {
chars[i] = chars[i-1];
}
chars[edp] = '.';
// trim trailing zeros: d00.0 --> d.000 --> d.
while (chars[len-1] == '0')
len--;
// add the last zero if necessary: d. --> d.0
if (chars[len-1] == '.')
len++;
// append E: d.dd --> d.ddE
chars[len++] = 'E';
// how far we shifted the decimal point
int shift = dp - edp;
// append the exponent --> d.ddEd
// the exponent is at most 7
chars[len++] = (char)(shift + '0');
}
else {
// non-zero digit point
int nzp = edp + 1;
// skip zeros: 0.003
while (chars[nzp] == '0')
nzp++;
// put the first non-zero digit to the left of '.'
chars[edp-1] = chars[nzp];
chars[edp] = '.';
// move other digits (non-zero) to the right of '.'
for (int i = nzp+1, j = edp+1; i < len; i++, j++)
chars[j] = chars[i];
// adjust the length
len -= nzp - edp;
// append 0 if nessary: 0.03 --> 3. --> 3.0
if (len == edp + 1)
chars[len++] = '0';
// append E-: d.dd --> d.ddE-
chars[len++] = 'E';
chars[len++] = '-';
// how far we shifted the decimal point
int shift = nzp - edp;
// append the exponent --> d.ddEd
// the exponent is at most 3
chars[len++] = (char)(shift + '0');
}
canonical = new String(chars, 0, len);
}
}
}
return canonical;
}
public float getValue() {
return value;
}
}
} // class FloatDV