Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package org.apache.flinkx.api
import org.apache.flink.annotation.{PublicEvolving, Public}
import org.apache.flink.api.common.functions.{FlatJoinFunction, JoinFunction}
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.api.java.functions.KeySelector
import org.apache.flink.api.java.typeutils.ResultTypeQueryable
import org.apache.flink.streaming.api.datastream.{
JoinedStreams => JavaJoinedStreams,
CoGroupedStreams => JavaCoGroupedStreams
}
import org.apache.flink.streaming.api.windowing.assigners.WindowAssigner
import org.apache.flink.streaming.api.windowing.evictors.Evictor
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.triggers.Trigger
import org.apache.flink.streaming.api.windowing.windows.Window
import org.apache.flink.util.Collector
import ScalaStreamOps._
/** `JoinedStreams` represents two [[DataStream]]s that have been joined. A streaming join operation is evaluated over
* elements in a window.
*
* To finalize the join operation you also need to specify a [[KeySelector]] for both the first and second input and a
* [[WindowAssigner]]
*
* Note: Right now, the groups are being built in memory so you need to ensure that they don't get too big. Otherwise
* the JVM might crash.
*
* Example:
*
* {{{
* val one: DataStream[(String, Int)] = ...
* val two: DataStream[(String, Int)] = ...
*
* val result = one.join(two)
* .where {t => ... }
* .equal {t => ... }
* .window(TumblingEventTimeWindows.of(Time.of(5, TimeUnit.SECONDS)))
* .apply(new MyJoinFunction())
* }
* }}}
*/
@Public
class JoinedStreams[T1, T2](input1: DataStream[T1], input2: DataStream[T2]) {
/** Specifies a [[KeySelector]] for elements from the first input.
*/
def where[KEY: TypeInformation](keySelector: T1 => KEY): Where[KEY] = {
val cleanFun = clean(keySelector)
val keyType = implicitly[TypeInformation[KEY]]
val javaSelector = new KeySelector[T1, KEY] with ResultTypeQueryable[KEY] {
def getKey(in: T1): KEY = cleanFun(in)
override def getProducedType: TypeInformation[KEY] = keyType
}
new Where[KEY](javaSelector, keyType)
}
/** A join operation that has a [[KeySelector]] defined for the first input.
*
* You need to specify a [[KeySelector]] for the second input using [[equalTo()]] before you can proceed with
* specifying a [[WindowAssigner]] using [[EqualTo.window()]].
*
* @tparam KEY
* Type of the key. This must be the same for both inputs
*/
class Where[KEY](keySelector1: KeySelector[T1, KEY], keyType: TypeInformation[KEY]) {
/** Specifies a [[KeySelector]] for elements from the second input.
*/
def equalTo(keySelector: T2 => KEY): EqualTo = {
val cleanFun = clean(keySelector)
val localKeyType = keyType
val javaSelector = new KeySelector[T2, KEY] with ResultTypeQueryable[KEY] {
def getKey(in: T2): KEY = cleanFun(in)
override def getProducedType: TypeInformation[KEY] = localKeyType
}
new EqualTo(javaSelector)
}
/** A join operation that has a [[KeySelector]] defined for the first and the second input.
*
* A window can now be specified using [[window()]].
*/
class EqualTo(keySelector2: KeySelector[T2, KEY]) {
/** Specifies the window on which the join operation works.
*/
@PublicEvolving
def window[W <: Window](
assigner: WindowAssigner[_ >: JavaCoGroupedStreams.TaggedUnion[T1, T2], W]
): WithWindow[W] = {
if (keySelector1 == null || keySelector2 == null) {
throw new UnsupportedOperationException(
"You first need to specify KeySelectors for both inputs using where() and equalTo()."
)
}
new WithWindow[W](clean(assigner), null, null, null)
}
/** A join operation that has [[KeySelector]]s defined for both inputs as well as a [[WindowAssigner]].
*
* @tparam W
* Type of {@@linkWindow} on which the join operation works.
*/
class WithWindow[W <: Window](
windowAssigner: WindowAssigner[_ >: JavaCoGroupedStreams.TaggedUnion[T1, T2], W],
trigger: Trigger[_ >: JavaCoGroupedStreams.TaggedUnion[T1, T2], _ >: W],
evictor: Evictor[_ >: JavaCoGroupedStreams.TaggedUnion[T1, T2], _ >: W],
val allowedLateness: Time
) {
/** Sets the [[Trigger]] that should be used to trigger window emission.
*/
@PublicEvolving
def trigger(newTrigger: Trigger[_ >: JavaCoGroupedStreams.TaggedUnion[T1, T2], _ >: W]): WithWindow[W] = {
new WithWindow[W](windowAssigner, newTrigger, evictor, allowedLateness)
}
/** Sets the [[Evictor]] that should be used to evict elements from a window before emission.
*
* Note: When using an evictor window performance will degrade significantly, since pre-aggregation of window
* results cannot be used.
*/
@PublicEvolving
def evictor(newEvictor: Evictor[_ >: JavaCoGroupedStreams.TaggedUnion[T1, T2], _ >: W]): WithWindow[W] = {
new WithWindow[W](windowAssigner, trigger, newEvictor, allowedLateness)
}
/** Sets the time by which elements are allowed to be late. Delegates to
* [[WindowedStream#allowedLateness(Time)]]
*/
@PublicEvolving
def allowedLateness(newLateness: Time): WithWindow[W] = {
new WithWindow[W](windowAssigner, trigger, evictor, newLateness)
}
/** Completes the join operation with the user function that is executed for windowed groups.
*/
def apply[O: TypeInformation](fun: (T1, T2) => O): DataStream[O] = {
require(fun != null, "Join function must not be null.")
val joiner = new FlatJoinFunction[T1, T2, O] {
val cleanFun = clean(fun)
def join(left: T1, right: T2, out: Collector[O]) = {
out.collect(cleanFun(left, right))
}
}
apply(joiner)
}
/** Completes the join operation with the user function that is executed for windowed groups.
*/
def apply[O: TypeInformation](fun: (T1, T2, Collector[O]) => Unit): DataStream[O] = {
require(fun != null, "Join function must not be null.")
val joiner = new FlatJoinFunction[T1, T2, O] {
val cleanFun = clean(fun)
def join(left: T1, right: T2, out: Collector[O]) = {
cleanFun(left, right, out)
}
}
apply(joiner)
}
/** Completes the join operation with the user function that is executed for windowed groups.
*/
def apply[T: TypeInformation](function: JoinFunction[T1, T2, T]): DataStream[T] = {
val join = new JavaJoinedStreams[T1, T2](input1.javaStream, input2.javaStream)
asScalaStream(
join
.where(keySelector1)
.equalTo(keySelector2)
.window(windowAssigner)
.trigger(trigger)
.evictor(evictor)
.allowedLateness(allowedLateness)
.apply(clean(function), implicitly[TypeInformation[T]])
)
}
/** Completes the join operation with the user function that is executed for windowed groups.
*/
def apply[T: TypeInformation](function: FlatJoinFunction[T1, T2, T]): DataStream[T] = {
val join = new JavaJoinedStreams[T1, T2](input1.javaStream, input2.javaStream)
asScalaStream(
join
.where(keySelector1)
.equalTo(keySelector2)
.window(windowAssigner)
.trigger(trigger)
.evictor(evictor)
.allowedLateness(allowedLateness)
.apply(clean(function), implicitly[TypeInformation[T]])
)
}
}
}
}
/** Returns a "closure-cleaned" version of the given function. Cleans only if closure cleaning is not disabled in the
* [[org.apache.flink.api.common.ExecutionConfig]].
*/
private[flinkx] def clean[F <: AnyRef](f: F): F = {
new StreamExecutionEnvironment(input1.javaStream.getExecutionEnvironment).scalaClean(f)
}
}