com.sun.tools.javac.util.RichDiagnosticFormatter Maven / Gradle / Ivy
/*
* Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.util;
import java.nio.file.Path;
import java.util.EnumMap;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Locale;
import java.util.Map;
import com.sun.tools.javac.code.Printer;
import com.sun.tools.javac.code.Symbol;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.code.Symtab;
import com.sun.tools.javac.code.Type;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.code.Types;
import com.sun.tools.javac.resources.CompilerProperties.Fragments;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.TypeTag.*;
import static com.sun.tools.javac.code.Kinds.*;
import static com.sun.tools.javac.code.Kinds.Kind.*;
import static com.sun.tools.javac.util.LayoutCharacters.*;
import static com.sun.tools.javac.util.RichDiagnosticFormatter.RichConfiguration.*;
/**
* A rich diagnostic formatter is a formatter that provides better integration
* with javac's type system. A diagnostic is first preprocessed in order to keep
* track of each types/symbols in it; after this information is collected,
* the diagnostic is rendered using a standard formatter, whose type/symbol printer
* has been replaced by a more refined version provided by this rich formatter.
* The rich formatter currently enables three different features: (i) simple class
* names - that is class names are displayed used a non qualified name (thus
* omitting package info) whenever possible - (ii) where clause list - a list of
* additional subdiagnostics that provide specific info about type-variables,
* captured types, intersection types that occur in the diagnostic that is to be
* formatted and (iii) type-variable disambiguation - when the diagnostic refers
* to two different type-variables with the same name, their representation is
* disambiguated by appending an index to the type variable name.
*
* This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.
*/
public class RichDiagnosticFormatter extends
ForwardingDiagnosticFormatter {
final Symtab syms;
final Types types;
final JCDiagnostic.Factory diags;
final JavacMessages messages;
/* name simplifier used by this formatter */
protected ClassNameSimplifier nameSimplifier;
/* type/symbol printer used by this formatter */
private RichPrinter printer;
/* map for keeping track of a where clause associated to a given type */
Map> whereClauses;
/** Get the DiagnosticFormatter instance for this context. */
public static RichDiagnosticFormatter instance(Context context) {
RichDiagnosticFormatter instance = context.get(RichDiagnosticFormatter.class);
if (instance == null)
instance = new RichDiagnosticFormatter(context);
return instance;
}
protected RichDiagnosticFormatter(Context context) {
super((AbstractDiagnosticFormatter)Log.instance(context).getDiagnosticFormatter());
setRichPrinter(new RichPrinter());
this.syms = Symtab.instance(context);
this.diags = JCDiagnostic.Factory.instance(context);
this.types = Types.instance(context);
this.messages = JavacMessages.instance(context);
whereClauses = new EnumMap<>(WhereClauseKind.class);
configuration = new RichConfiguration(Options.instance(context), formatter);
for (WhereClauseKind kind : WhereClauseKind.values())
whereClauses.put(kind, new LinkedHashMap());
}
@Override
public String format(JCDiagnostic diag, Locale l) {
StringBuilder sb = new StringBuilder();
nameSimplifier = new ClassNameSimplifier();
for (WhereClauseKind kind : WhereClauseKind.values())
whereClauses.get(kind).clear();
preprocessDiagnostic(diag);
sb.append(formatter.format(diag, l));
if (getConfiguration().isEnabled(RichFormatterFeature.WHERE_CLAUSES)) {
List clauses = getWhereClauses();
String indent = formatter.isRaw() ? "" :
formatter.indentString(DetailsInc);
for (JCDiagnostic d : clauses) {
String whereClause = formatter.format(d, l);
if (whereClause.length() > 0) {
sb.append('\n' + indent + whereClause);
}
}
}
return sb.toString();
}
@Override
public String formatMessage(JCDiagnostic diag, Locale l) {
nameSimplifier = new ClassNameSimplifier();
preprocessDiagnostic(diag);
return super.formatMessage(diag, l);
}
/**
* Sets the type/symbol printer used by this formatter.
* @param printer the rich printer to be set
*/
protected void setRichPrinter(RichPrinter printer) {
this.printer = printer;
formatter.setPrinter(printer);
}
/**
* Returns the type/symbol printer used by this formatter.
* @return type/symbol rich printer
*/
protected RichPrinter getRichPrinter() {
return printer;
}
/**
* Preprocess a given diagnostic by looking both into its arguments and into
* its subdiagnostics (if any). This preprocessing is responsible for
* generating info corresponding to features like where clauses, name
* simplification, etc.
*
* @param diag the diagnostic to be preprocessed
*/
protected void preprocessDiagnostic(JCDiagnostic diag) {
for (Object o : diag.getArgs()) {
if (o != null) {
preprocessArgument(o);
}
}
if (diag.isMultiline()) {
for (JCDiagnostic d : diag.getSubdiagnostics())
preprocessDiagnostic(d);
}
}
/**
* Preprocess a diagnostic argument. A type/symbol argument is
* preprocessed by specialized type/symbol preprocessors.
*
* @param arg the argument to be translated
*/
protected void preprocessArgument(Object arg) {
if (arg instanceof Type) {
preprocessType((Type)arg);
}
else if (arg instanceof Symbol) {
preprocessSymbol((Symbol)arg);
}
else if (arg instanceof JCDiagnostic) {
preprocessDiagnostic((JCDiagnostic)arg);
}
else if (arg instanceof Iterable> && !(arg instanceof Path)) {
for (Object o : (Iterable>)arg) {
preprocessArgument(o);
}
}
}
/**
* Build a list of multiline diagnostics containing detailed info about
* type-variables, captured types, and intersection types
*
* @return where clause list
*/
protected List getWhereClauses() {
List clauses = List.nil();
for (WhereClauseKind kind : WhereClauseKind.values()) {
List lines = List.nil();
for (Map.Entry entry : whereClauses.get(kind).entrySet()) {
lines = lines.prepend(entry.getValue());
}
if (!lines.isEmpty()) {
String key = kind.key();
if (lines.size() > 1)
key += ".1";
JCDiagnostic d = diags.fragment(key, whereClauses.get(kind).keySet());
d = new JCDiagnostic.MultilineDiagnostic(d, lines.reverse());
clauses = clauses.prepend(d);
}
}
return clauses.reverse();
}
private int indexOf(Type type, WhereClauseKind kind) {
int index = 1;
for (Type t : whereClauses.get(kind).keySet()) {
if (t.tsym == type.tsym) {
return index;
}
if (kind != WhereClauseKind.TYPEVAR ||
t.toString().equals(type.toString())) {
index++;
}
}
return -1;
}
private boolean unique(TypeVar typevar) {
typevar = (TypeVar) typevar.stripMetadata();
int found = 0;
for (Type t : whereClauses.get(WhereClauseKind.TYPEVAR).keySet()) {
if (t.stripMetadata().toString().equals(typevar.toString())) {
found++;
}
}
if (found < 1)
throw new AssertionError("Missing type variable in where clause: " + typevar);
return found == 1;
}
//where
/**
* This enum defines all possible kinds of where clauses that can be
* attached by a rich diagnostic formatter to a given diagnostic
*/
enum WhereClauseKind {
/** where clause regarding a type variable */
TYPEVAR("where.description.typevar"),
/** where clause regarding a captured type */
CAPTURED("where.description.captured"),
/** where clause regarding an intersection type */
INTERSECTION("where.description.intersection");
/** resource key for this where clause kind */
private final String key;
WhereClauseKind(String key) {
this.key = key;
}
String key() {
return key;
}
}
//
/**
* A name simplifier keeps track of class names usages in order to determine
* whether a class name can be compacted or not. Short names are not used
* if a conflict is detected, e.g. when two classes with the same simple
* name belong to different packages - in this case the formatter reverts
* to fullnames as compact names might lead to a confusing diagnostic.
*/
protected class ClassNameSimplifier {
/* table for keeping track of all short name usages */
Map> nameClashes = new HashMap<>();
/**
* Add a name usage to the simplifier's internal cache
*/
protected void addUsage(Symbol sym) {
Name n = sym.getSimpleName();
List conflicts = nameClashes.get(n);
if (conflicts == null) {
conflicts = List.nil();
}
if (!conflicts.contains(sym))
nameClashes.put(n, conflicts.append(sym));
}
public String simplify(Symbol s) {
String name = s.getQualifiedName().toString();
if (!s.type.isCompound() && !s.type.isPrimitive()) {
List conflicts = nameClashes.get(s.getSimpleName());
if (conflicts == null ||
(conflicts.size() == 1 &&
conflicts.contains(s))) {
List l = List.nil();
Symbol s2 = s;
while (s2.type.hasTag(CLASS) &&
s2.type.getEnclosingType().hasTag(CLASS) &&
s2.owner.kind == TYP) {
l = l.prepend(s2.getSimpleName());
s2 = s2.owner;
}
l = l.prepend(s2.getSimpleName());
StringBuilder buf = new StringBuilder();
String sep = "";
for (Name n2 : l) {
buf.append(sep);
buf.append(n2);
sep = ".";
}
name = buf.toString();
}
}
return name;
}
}
//
//
/**
* Enhanced type/symbol printer that provides support for features like simple names
* and type variable disambiguation. This enriched printer exploits the info
* discovered during type/symbol preprocessing. This printer is set on the delegate
* formatter so that rich type/symbol info can be properly rendered.
*/
protected class RichPrinter extends Printer {
@Override
public String localize(Locale locale, String key, Object... args) {
return formatter.localize(locale, key, args);
}
@Override
public String capturedVarId(CapturedType t, Locale locale) {
return indexOf(t, WhereClauseKind.CAPTURED) + "";
}
@Override
public String visitType(Type t, Locale locale) {
String s = super.visitType(t, locale);
if (t == syms.botType)
s = localize(locale, "compiler.misc.type.null");
return s;
}
@Override
public String visitCapturedType(CapturedType t, Locale locale) {
if (getConfiguration().isEnabled(RichFormatterFeature.WHERE_CLAUSES)) {
return localize(locale,
"compiler.misc.captured.type",
indexOf(t, WhereClauseKind.CAPTURED));
}
else
return super.visitCapturedType(t, locale);
}
@Override
public String visitClassType(ClassType t, Locale locale) {
if (t.isCompound() &&
getConfiguration().isEnabled(RichFormatterFeature.WHERE_CLAUSES)) {
return localize(locale,
"compiler.misc.intersection.type",
indexOf(t, WhereClauseKind.INTERSECTION));
}
else
return super.visitClassType(t, locale);
}
@Override
protected String className(ClassType t, boolean longform, Locale locale) {
Symbol sym = t.tsym;
if (sym.name.length() == 0 ||
!getConfiguration().isEnabled(RichFormatterFeature.SIMPLE_NAMES)) {
return super.className(t, longform, locale);
}
else if (longform)
return nameSimplifier.simplify(sym).toString();
else
return sym.name.toString();
}
@Override
public String visitTypeVar(TypeVar t, Locale locale) {
if (unique(t) ||
!getConfiguration().isEnabled(RichFormatterFeature.UNIQUE_TYPEVAR_NAMES)) {
return t.toString();
}
else {
return localize(locale,
"compiler.misc.type.var",
t.toString(), indexOf(t, WhereClauseKind.TYPEVAR));
}
}
@Override
public String visitClassSymbol(ClassSymbol s, Locale locale) {
if (s.type.isCompound()) {
return visit(s.type, locale);
}
String name = nameSimplifier.simplify(s);
if (name.length() == 0 ||
!getConfiguration().isEnabled(RichFormatterFeature.SIMPLE_NAMES)) {
return super.visitClassSymbol(s, locale);
}
else {
return name;
}
}
@Override
public String visitMethodSymbol(MethodSymbol s, Locale locale) {
String ownerName = visit(s.owner, locale);
if (s.isStaticOrInstanceInit()) {
return ownerName;
} else {
String ms = (s.name == s.name.table.names.init)
? ownerName
: s.name.toString();
if (s.type != null) {
if (s.type.hasTag(FORALL)) {
ms = "<" + visitTypes(s.type.getTypeArguments(), locale) + ">" + ms;
}
ms += "(" + printMethodArgs(
s.type.getParameterTypes(),
(s.flags() & VARARGS) != 0,
locale) + ")";
}
return ms;
}
}
}
//
//
/**
* Preprocess a given type looking for (i) additional info (where clauses) to be
* added to the main diagnostic (ii) names to be compacted.
*/
protected void preprocessType(Type t) {
typePreprocessor.visit(t);
}
//where
protected Types.UnaryVisitor typePreprocessor =
new Types.UnaryVisitor() {
public Void visit(List ts) {
for (Type t : ts)
visit(t);
return null;
}
@Override
public Void visitForAll(ForAll t, Void ignored) {
visit(t.tvars);
visit(t.qtype);
return null;
}
@Override
public Void visitMethodType(MethodType t, Void ignored) {
visit(t.argtypes);
visit(t.restype);
return null;
}
@Override
public Void visitErrorType(ErrorType t, Void ignored) {
Type ot = t.getOriginalType();
if (ot != null)
visit(ot);
return null;
}
@Override
public Void visitArrayType(ArrayType t, Void ignored) {
visit(t.elemtype);
return null;
}
@Override
public Void visitWildcardType(WildcardType t, Void ignored) {
visit(t.type);
return null;
}
public Void visitType(Type t, Void ignored) {
return null;
}
@Override
public Void visitCapturedType(CapturedType t, Void ignored) {
if (indexOf(t, WhereClauseKind.CAPTURED) == -1) {
String suffix = t.lower == syms.botType ? ".1" : "";
JCDiagnostic d = diags.fragment("where.captured"+ suffix, t, t.getUpperBound(), t.lower, t.wildcard);
whereClauses.get(WhereClauseKind.CAPTURED).put(t, d);
visit(t.wildcard);
visit(t.lower);
visit(t.getUpperBound());
}
return null;
}
@Override
public Void visitClassType(ClassType t, Void ignored) {
if (t.isCompound()) {
if (indexOf(t, WhereClauseKind.INTERSECTION) == -1) {
Type supertype = types.supertype(t);
List interfaces = types.interfaces(t);
JCDiagnostic d = diags.fragment(Fragments.WhereIntersection(t, interfaces.prepend(supertype)));
whereClauses.get(WhereClauseKind.INTERSECTION).put(t, d);
visit(supertype);
visit(interfaces);
}
} else if (t.tsym.name.isEmpty()) {
//anon class
ClassType norm = (ClassType) t.tsym.type;
if (norm != null) {
if (norm.interfaces_field != null && norm.interfaces_field.nonEmpty()) {
visit(norm.interfaces_field.head);
} else {
visit(norm.supertype_field);
}
}
}
nameSimplifier.addUsage(t.tsym);
visit(t.getTypeArguments());
Type enclosingType;
try {
enclosingType = t.getEnclosingType();
} catch (CompletionFailure cf) {
return null;
}
if (enclosingType != Type.noType)
visit(t.getEnclosingType());
return null;
}
@Override
public Void visitTypeVar(TypeVar t, Void ignored) {
t = (TypeVar)t.stripMetadataIfNeeded();
if (indexOf(t, WhereClauseKind.TYPEVAR) == -1) {
//access the bound type and skip error types
Type bound = t.getUpperBound();
while ((bound instanceof ErrorType))
bound = ((ErrorType)bound).getOriginalType();
//retrieve the bound list - if the type variable
//has not been attributed the bound is not set
List bounds = (bound != null) &&
(bound.hasTag(CLASS) || bound.hasTag(TYPEVAR)) ?
getBounds(bound) :
List.nil();
nameSimplifier.addUsage(t.tsym);
boolean boundErroneous = bounds.head == null ||
bounds.head.hasTag(NONE) ||
bounds.head.hasTag(ERROR);
if ((t.tsym.flags() & SYNTHETIC) == 0) {
//this is a true typevar
JCDiagnostic d = diags.fragment("where.typevar" +
(boundErroneous ? ".1" : ""), t, bounds,
kindName(t.tsym.location()), t.tsym.location());
whereClauses.get(WhereClauseKind.TYPEVAR).put(t, d);
symbolPreprocessor.visit(t.tsym.location(), null);
visit(bounds);
} else {
Assert.check(!boundErroneous);
//this is a fresh (synthetic) tvar
JCDiagnostic d = diags.fragment(Fragments.WhereFreshTypevar(t, bounds));
whereClauses.get(WhereClauseKind.TYPEVAR).put(t, d);
visit(bounds);
}
}
return null;
}
//where:
private List getBounds(Type bound) {
return bound.isCompound() ? types.directSupertypes(bound) : List.of(bound);
}
};
//
//
/**
* Preprocess a given symbol looking for (i) additional info (where clauses) to be
* added to the main diagnostic (ii) names to be compacted
*/
protected void preprocessSymbol(Symbol s) {
symbolPreprocessor.visit(s, null);
}
//where
protected Types.DefaultSymbolVisitor symbolPreprocessor =
new Types.DefaultSymbolVisitor() {
@Override
public Void visitClassSymbol(ClassSymbol s, Void ignored) {
if (s.type.isCompound()) {
typePreprocessor.visit(s.type);
} else {
nameSimplifier.addUsage(s);
}
return null;
}
@Override
public Void visitSymbol(Symbol s, Void ignored) {
return null;
}
@Override
public Void visitMethodSymbol(MethodSymbol s, Void ignored) {
visit(s.owner, null);
if (s.type != null)
typePreprocessor.visit(s.type);
return null;
}
};
//
@Override
public RichConfiguration getConfiguration() {
//the following cast is always safe - see init
return (RichConfiguration)configuration;
}
/**
* Configuration object provided by the rich formatter.
*/
public static class RichConfiguration extends ForwardingDiagnosticFormatter.ForwardingConfiguration {
/** set of enabled rich formatter's features */
protected java.util.EnumSet features;
@SuppressWarnings("fallthrough")
public RichConfiguration(Options options, AbstractDiagnosticFormatter formatter) {
super(formatter.getConfiguration());
features = formatter.isRaw() ? EnumSet.noneOf(RichFormatterFeature.class) :
EnumSet.of(RichFormatterFeature.SIMPLE_NAMES,
RichFormatterFeature.WHERE_CLAUSES,
RichFormatterFeature.UNIQUE_TYPEVAR_NAMES);
String diagOpts = options.get("diags.formatterOptions");
if (diagOpts != null) {
for (String args: diagOpts.split(",")) {
if (args.equals("-where")) {
features.remove(RichFormatterFeature.WHERE_CLAUSES);
}
else if (args.equals("where")) {
features.add(RichFormatterFeature.WHERE_CLAUSES);
}
if (args.equals("-simpleNames")) {
features.remove(RichFormatterFeature.SIMPLE_NAMES);
}
else if (args.equals("simpleNames")) {
features.add(RichFormatterFeature.SIMPLE_NAMES);
}
if (args.equals("-disambiguateTvars")) {
features.remove(RichFormatterFeature.UNIQUE_TYPEVAR_NAMES);
}
else if (args.equals("disambiguateTvars")) {
features.add(RichFormatterFeature.UNIQUE_TYPEVAR_NAMES);
}
}
}
}
/**
* Returns a list of all the features supported by the rich formatter.
* @return list of supported features
*/
public RichFormatterFeature[] getAvailableFeatures() {
return RichFormatterFeature.values();
}
/**
* Enable a specific feature on this rich formatter.
* @param feature feature to be enabled
*/
public void enable(RichFormatterFeature feature) {
features.add(feature);
}
/**
* Disable a specific feature on this rich formatter.
* @param feature feature to be disabled
*/
public void disable(RichFormatterFeature feature) {
features.remove(feature);
}
/**
* Is a given feature enabled on this formatter?
* @param feature feature to be tested
*/
public boolean isEnabled(RichFormatterFeature feature) {
return features.contains(feature);
}
/**
* The advanced formatting features provided by the rich formatter
*/
public enum RichFormatterFeature {
/** a list of additional info regarding a given type/symbol */
WHERE_CLAUSES,
/** full class names simplification (where possible) */
SIMPLE_NAMES,
/** type-variable names disambiguation */
UNIQUE_TYPEVAR_NAMES
}
}
}