org.opencv.contrib.FaceRecognizer Maven / Gradle / Ivy
// // This file is auto-generated. Please don't modify it! // package org.opencv.contrib; import java.lang.String; import java.util.List; import org.opencv.core.Algorithm; import org.opencv.core.Mat; import org.opencv.utils.Converters; // C++: class FaceRecognizer /** *
* *All face recognition models in OpenCV are derived from the abstract base * class "FaceRecognizer", which provides a unified access to all face * recongition algorithms in OpenCV.
* *class FaceRecognizer : public Algorithm
* *// C++ code:
* * *public:
* *//! virtual destructor
* *virtual ~FaceRecognizer() {}
* *// Trains a FaceRecognizer.
* *virtual void train(InputArray src, InputArray labels) = 0;
* *// Updates a FaceRecognizer.
* *virtual void update(InputArrayOfArrays src, InputArray labels);
* *// Gets a prediction from a FaceRecognizer.
* *virtual int predict(InputArray src) const = 0;
* *// Predicts the label and confidence for a given sample.
* *virtual void predict(InputArray src, int &label, double &confidence) const = * 0;
* *// Serializes this object to a given filename.
* *virtual void save(const string& filename) const;
* *// Deserializes this object from a given filename.
* *virtual void load(const string& filename);
* *// Serializes this object to a given cv.FileStorage.
* *virtual void save(FileStorage& fs) const = 0;
* *// Deserializes this object from a given cv.FileStorage.
* *virtual void load(const FileStorage& fs) = 0;
* *};
* * @see org.opencv.contrib.FaceRecognizer : public Algorithm */ public class FaceRecognizer extends Algorithm { protected FaceRecognizer(long addr) { super(addr); } // // C++: void FaceRecognizer::load(string filename) // /** *Loads a "FaceRecognizer" and its model state.
* *Loads a persisted model and state from a given XML or YAML file. Every * "FaceRecognizer" has to overwrite
* * @param filename a filename * * @see org.opencv.contrib.FaceRecognizer.load */ public void load(String filename) { load_0(nativeObj, filename); return; } // // C++: void FaceRecognizer::predict(Mat src, int& label, double& confidence) // /** *FaceRecognizer.load(FileStorage& * fs)
to enable loading the model state.FaceRecognizer.load(FileStorage& * fs)
in turn gets called byFaceRecognizer.load(const string& * filename)
, to ease saving a model.Predicts a label and associated confidence (e.g. distance) for a given input * image.
* *The suffix
* *const
means that prediction does not affect the * internal model state, so the method can be safely called from within * different threads.The following example shows how to get a prediction from a trained model: * using namespace cv;
* *// C++ code:
* *// Do your initialization here (create the cv.FaceRecognizer model)...
* *//...
* *// Read in a sample image:
* *Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
* *// And get a prediction from the cv.FaceRecognizer:
* *int predicted = model->predict(img);
* *Or to get a prediction and the associated confidence (e.g. distance):
using namespace cv;
* *// C++ code:
* *// Do your initialization here (create the cv.FaceRecognizer model)...
* *//...
* *Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE);
* *// Some variables for the predicted label and associated confidence (e.g. * distance):
* *int predicted_label = -1;
* *double predicted_confidence = 0.0;
* *// Get the prediction and associated confidence from the model
* *model->predict(img, predicted_label, predicted_confidence);
* * @param src Sample image to get a prediction from. * @param label The predicted label for the given image. * @param confidence Associated confidence (e.g. distance) for the predicted * label. * * @see org.opencv.contrib.FaceRecognizer.predict */ public void predict(Mat src, int[] label, double[] confidence) { double[] label_out = new double[1]; double[] confidence_out = new double[1]; predict_0(nativeObj, src.nativeObj, label_out, confidence_out); if(label!=null) label[0] = (int)label_out[0]; if(confidence!=null) confidence[0] = (double)confidence_out[0]; return; } // // C++: void FaceRecognizer::save(string filename) // /** *Saves a "FaceRecognizer" and its model state.
* *Saves this model to a given filename, either as XML or YAML.
* *Saves this model to a given "FileStorage".
* *Every "FaceRecognizer" overwrites
* *FaceRecognizer.save(FileStorage& * fs)
to save the internal model state.FaceRecognizer.save(const * string& filename)
saves the state of a model to the given filename.The suffix
* * @param filename The filename to store this "FaceRecognizer" to (either * XML/YAML). * * @see org.opencv.contrib.FaceRecognizer.save */ public void save(String filename) { save_0(nativeObj, filename); return; } // // C++: void FaceRecognizer::train(vector_Mat src, Mat labels) // /** *const
means that prediction does not affect the * internal model state, so the method can be safely called from within * different threads.Trains a FaceRecognizer with given data and associated labels.
* *The following source code snippet shows you how to learn a Fisherfaces model * on a given set of images. The images are read with "imread" and pushed into a *
* *std.vector
. The labels of each image are stored within a *std.vector
(you could also use a "Mat" of type * "CV_32SC1"). Think of the label as the subject (the person) this image * belongs to, so same subjects (persons) should have the same label. For the * available "FaceRecognizer" you don't have to pay any attention to the order * of the labels, just make sure same persons have the same label: // holds * images and labels// C++ code:
* *vector
* *images; vector
* *labels; // images for first person
* *images.push_back(imread("person0/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); * labels.push_back(0);
* *images.push_back(imread("person0/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); * labels.push_back(0);
* *images.push_back(imread("person0/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); * labels.push_back(0);
* *// images for second person
* *images.push_back(imread("person1/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); * labels.push_back(1);
* *images.push_back(imread("person1/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); * labels.push_back(1);
* *images.push_back(imread("person1/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); * labels.push_back(1);
* *Now that you have read some images, we can create a new "FaceRecognizer". In * this example I'll create a Fisherfaces model and decide to keep all of the * possible Fisherfaces:
* *// Create a new Fisherfaces model and retain all available Fisherfaces, *
* *// C++ code:
* *// this is the most common usage of this specific FaceRecognizer:
* *//
* *Ptr
* *model = createFisherFaceRecognizer(); And finally train it on the given dataset (the face images and labels): *
* *// This is the common interface to train all of the available * cv.FaceRecognizer
* *// C++ code:
* *// implementations:
* *//
* *model->train(images, labels);
* * @param src The training images, that means the faces you want to learn. The * data has to be given as avector
. * @param labels The labels corresponding to the images have to be given either * as avector
or a * * @see org.opencv.contrib.FaceRecognizer.train */ public void train(Listsrc, Mat labels) { Mat src_mat = Converters.vector_Mat_to_Mat(src); train_0(nativeObj, src_mat.nativeObj, labels.nativeObj); return; } // // C++: void FaceRecognizer::update(vector_Mat src, Mat labels) // /** * Updates a FaceRecognizer with given data and associated labels.
* *This method updates a (probably trained) "FaceRecognizer", but only if the * algorithm supports it. The Local Binary Patterns Histograms (LBPH) recognizer * (see "createLBPHFaceRecognizer") can be updated. For the Eigenfaces and * Fisherfaces method, this is algorithmically not possible and you have to * re-estimate the model with "FaceRecognizer.train". In any case, a call to * train empties the existing model and learns a new model, while update does * not delete any model data. * // Create a new LBPH model (it can be updated) and use the default * parameters,
* *// C++ code:
* *// this is the most common usage of this specific FaceRecognizer:
* *//
* *Ptr
* *model = createLBPHFaceRecognizer(); // This is the common interface to train all of the available * cv.FaceRecognizer
* *// implementations:
* *//
* *model->train(images, labels);
* *// Some containers to hold new image:
* *vector
* *newImages; vector
* *newLabels; // You should add some images to the containers:
* *//
* *//...
* *//
* *// Now updating the model is as easy as calling:
* *model->update(newImages,newLabels);
* *// This will preserve the old model data and extend the existing model
* *// with the new features extracted from newImages!
* *Calling update on an Eigenfaces model (see "createEigenFaceRecognizer"), * which doesn't support updating, will throw an error similar to:
* *OpenCV Error: The function/feature is not implemented (This FaceRecognizer * (FaceRecognizer.Eigenfaces) does not support updating, you have to use * FaceRecognizer.train to update it.) in update, file /home/philipp/git/opencv/modules/contrib/src/facerec.cpp, * line 305
* *// C++ code:
* *terminate called after throwing an instance of 'cv.Exception'
* *Please note: The "FaceRecognizer" does not store your training images, * because this would be very memory intense and it's not the responsibility of * te "FaceRecognizer" to do so. The caller is responsible for maintaining the * dataset, he want to work with. *
* * @param src The training images, that means the faces you want to learn. The * data has to be given as avector
. * @param labels The labels corresponding to the images have to be given either * as avector
or a * * @see org.opencv.contrib.FaceRecognizer.update */ public void update(Listsrc, Mat labels) { Mat src_mat = Converters.vector_Mat_to_Mat(src); update_0(nativeObj, src_mat.nativeObj, labels.nativeObj); return; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: void FaceRecognizer::load(string filename) private static native void load_0(long nativeObj, String filename); // C++: void FaceRecognizer::predict(Mat src, int& label, double& confidence) private static native void predict_0(long nativeObj, long src_nativeObj, double[] label_out, double[] confidence_out); // C++: void FaceRecognizer::save(string filename) private static native void save_0(long nativeObj, String filename); // C++: void FaceRecognizer::train(vector_Mat src, Mat labels) private static native void train_0(long nativeObj, long src_mat_nativeObj, long labels_nativeObj); // C++: void FaceRecognizer::update(vector_Mat src, Mat labels) private static native void update_0(long nativeObj, long src_mat_nativeObj, long labels_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }