org.opencv.ml.CvDTree Maven / Gradle / Ivy
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import org.opencv.core.Mat;
// C++: class CvDTree
/**
* The class implements a decision tree as described in the beginning of this
* section.
*
* @see org.opencv.ml.CvDTree : public CvStatModel
*/
public class CvDTree extends CvStatModel {
protected CvDTree(long addr) { super(addr); }
//
// C++: CvDTree::CvDTree()
//
public CvDTree()
{
super( CvDTree_0() );
return;
}
//
// C++: void CvDTree::clear()
//
public void clear()
{
clear_0(nativeObj);
return;
}
//
// C++: Mat CvDTree::getVarImportance()
//
/**
* Returns the variable importance array.
*
* @see org.opencv.ml.CvDTree.getVarImportance
*/
public Mat getVarImportance()
{
Mat retVal = new Mat(getVarImportance_0(nativeObj));
return retVal;
}
//
// C++: CvDTreeNode* CvDTree::predict(Mat sample, Mat missingDataMask = cv::Mat(), bool preprocessedInput = false)
//
// Return type 'CvDTreeNode*' is not supported, skipping the function
//
// C++: bool CvDTree::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvDTreeParams params = CvDTreeParams())
//
/**
* Trains a decision tree.
*
* There are four train
methods in "CvDTree":
*
* - The first two methods follow the generic "CvStatModel.train"
* conventions. It is the most complete form. Both data layouts
* (
tflag=CV_ROW_SAMPLE
and tflag=CV_COL_SAMPLE
) are
* supported, as well as sample and variable subsets, missing measurements,
* arbitrary combinations of input and output variable types, and so on. The
* last parameter contains all of the necessary training parameters (see the
* "CvDTreeParams" description).
* - The third method uses "CvMLData" to pass training data to a decision
* tree.
*
- The last method
train
is mostly used for building tree
* ensembles. It takes the pre-constructed "CvDTreeTrainData" instance and an
* optional subset of the training set. The indices in subsampleIdx
* are counted relatively to the _sample_idx
, passed to the
* CvDTreeTrainData
constructor. For example, if _sample_idx=[1,
* 5, 7, 100]
, then subsampleIdx=[0,3]
means that the
* samples [1, 100]
of the original training set are used.
*
*
* The function is parallelized with the TBB library.
*
* @param trainData a trainData
* @param tflag a tflag
* @param responses a responses
* @param varIdx a varIdx
* @param sampleIdx a sampleIdx
* @param varType a varType
* @param missingDataMask a missingDataMask
* @param params a params
*
* @see org.opencv.ml.CvDTree.train
*/
public boolean train(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvDTreeParams params)
{
boolean retVal = train_0(nativeObj, trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj);
return retVal;
}
/**
* Trains a decision tree.
*
* There are four train
methods in "CvDTree":
*
* - The first two methods follow the generic "CvStatModel.train"
* conventions. It is the most complete form. Both data layouts
* (
tflag=CV_ROW_SAMPLE
and tflag=CV_COL_SAMPLE
) are
* supported, as well as sample and variable subsets, missing measurements,
* arbitrary combinations of input and output variable types, and so on. The
* last parameter contains all of the necessary training parameters (see the
* "CvDTreeParams" description).
* - The third method uses "CvMLData" to pass training data to a decision
* tree.
*
- The last method
train
is mostly used for building tree
* ensembles. It takes the pre-constructed "CvDTreeTrainData" instance and an
* optional subset of the training set. The indices in subsampleIdx
* are counted relatively to the _sample_idx
, passed to the
* CvDTreeTrainData
constructor. For example, if _sample_idx=[1,
* 5, 7, 100]
, then subsampleIdx=[0,3]
means that the
* samples [1, 100]
of the original training set are used.
*
*
* The function is parallelized with the TBB library.
*
* @param trainData a trainData
* @param tflag a tflag
* @param responses a responses
*
* @see org.opencv.ml.CvDTree.train
*/
public boolean train(Mat trainData, int tflag, Mat responses)
{
boolean retVal = train_1(nativeObj, trainData.nativeObj, tflag, responses.nativeObj);
return retVal;
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: CvDTree::CvDTree()
private static native long CvDTree_0();
// C++: void CvDTree::clear()
private static native void clear_0(long nativeObj);
// C++: Mat CvDTree::getVarImportance()
private static native long getVarImportance_0(long nativeObj);
// C++: bool CvDTree::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvDTreeParams params = CvDTreeParams())
private static native boolean train_0(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj);
private static native boolean train_1(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj);
// native support for java finalize()
private static native void delete(long nativeObj);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy