All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.ml.CvDTree Maven / Gradle / Ivy


//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;

import org.opencv.core.Mat;

// C++: class CvDTree
/**
 * 

The class implements a decision tree as described in the beginning of this * section.

* * @see org.opencv.ml.CvDTree : public CvStatModel */ public class CvDTree extends CvStatModel { protected CvDTree(long addr) { super(addr); } // // C++: CvDTree::CvDTree() // public CvDTree() { super( CvDTree_0() ); return; } // // C++: void CvDTree::clear() // public void clear() { clear_0(nativeObj); return; } // // C++: Mat CvDTree::getVarImportance() // /** *

Returns the variable importance array.

* * @see org.opencv.ml.CvDTree.getVarImportance */ public Mat getVarImportance() { Mat retVal = new Mat(getVarImportance_0(nativeObj)); return retVal; } // // C++: CvDTreeNode* CvDTree::predict(Mat sample, Mat missingDataMask = cv::Mat(), bool preprocessedInput = false) // // Return type 'CvDTreeNode*' is not supported, skipping the function // // C++: bool CvDTree::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvDTreeParams params = CvDTreeParams()) // /** *

Trains a decision tree.

* *

There are four train methods in "CvDTree":

*
    *
  • The first two methods follow the generic "CvStatModel.train" * conventions. It is the most complete form. Both data layouts * (tflag=CV_ROW_SAMPLE and tflag=CV_COL_SAMPLE) are * supported, as well as sample and variable subsets, missing measurements, * arbitrary combinations of input and output variable types, and so on. The * last parameter contains all of the necessary training parameters (see the * "CvDTreeParams" description). *
  • The third method uses "CvMLData" to pass training data to a decision * tree. *
  • The last method train is mostly used for building tree * ensembles. It takes the pre-constructed "CvDTreeTrainData" instance and an * optional subset of the training set. The indices in subsampleIdx * are counted relatively to the _sample_idx, passed to the * CvDTreeTrainData constructor. For example, if _sample_idx=[1, * 5, 7, 100], then subsampleIdx=[0,3] means that the * samples [1, 100] of the original training set are used. *
* *

The function is parallelized with the TBB library.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param varType a varType * @param missingDataMask a missingDataMask * @param params a params * * @see org.opencv.ml.CvDTree.train */ public boolean train(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvDTreeParams params) { boolean retVal = train_0(nativeObj, trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj); return retVal; } /** *

Trains a decision tree.

* *

There are four train methods in "CvDTree":

*
    *
  • The first two methods follow the generic "CvStatModel.train" * conventions. It is the most complete form. Both data layouts * (tflag=CV_ROW_SAMPLE and tflag=CV_COL_SAMPLE) are * supported, as well as sample and variable subsets, missing measurements, * arbitrary combinations of input and output variable types, and so on. The * last parameter contains all of the necessary training parameters (see the * "CvDTreeParams" description). *
  • The third method uses "CvMLData" to pass training data to a decision * tree. *
  • The last method train is mostly used for building tree * ensembles. It takes the pre-constructed "CvDTreeTrainData" instance and an * optional subset of the training set. The indices in subsampleIdx * are counted relatively to the _sample_idx, passed to the * CvDTreeTrainData constructor. For example, if _sample_idx=[1, * 5, 7, 100], then subsampleIdx=[0,3] means that the * samples [1, 100] of the original training set are used. *
* *

The function is parallelized with the TBB library.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * * @see org.opencv.ml.CvDTree.train */ public boolean train(Mat trainData, int tflag, Mat responses) { boolean retVal = train_1(nativeObj, trainData.nativeObj, tflag, responses.nativeObj); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: CvDTree::CvDTree() private static native long CvDTree_0(); // C++: void CvDTree::clear() private static native void clear_0(long nativeObj); // C++: Mat CvDTree::getVarImportance() private static native long getVarImportance_0(long nativeObj); // C++: bool CvDTree::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvDTreeParams params = CvDTreeParams()) private static native boolean train_0(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj); private static native boolean train_1(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy