All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.ml.CvGBTrees Maven / Gradle / Ivy

There is a newer version: 1.1.1
Show newest version

//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;

import org.opencv.core.Mat;
import org.opencv.core.Range;

// C++: class CvGBTrees
/**
 * 

The class implements the Gradient boosted tree model as described in the * beginning of this section.

* * @see org.opencv.ml.CvGBTrees : public CvStatModel */ public class CvGBTrees extends CvStatModel { protected CvGBTrees(long addr) { super(addr); } public static final int SQUARED_LOSS = 0, ABSOLUTE_LOSS = 0+1, HUBER_LOSS = 3, DEVIANCE_LOSS = 3+1; // // C++: CvGBTrees::CvGBTrees() // /** *

Default and training constructors.

* *

The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.

* * @see org.opencv.ml.CvGBTrees.CvGBTrees */ public CvGBTrees() { super( CvGBTrees_0() ); return; } // // C++: CvGBTrees::CvGBTrees(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvGBTreesParams params = CvGBTreesParams()) // /** *

Default and training constructors.

* *

The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param varType a varType * @param missingDataMask a missingDataMask * @param params a params * * @see org.opencv.ml.CvGBTrees.CvGBTrees */ public CvGBTrees(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvGBTreesParams params) { super( CvGBTrees_1(trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj) ); return; } /** *

Default and training constructors.

* *

The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * * @see org.opencv.ml.CvGBTrees.CvGBTrees */ public CvGBTrees(Mat trainData, int tflag, Mat responses) { super( CvGBTrees_2(trainData.nativeObj, tflag, responses.nativeObj) ); return; } // // C++: void CvGBTrees::clear() // /** *

Clears the model.

* *

The function deletes the data set information and all the weak models and * sets all internal variables to the initial state. The function is called in * "CvGBTrees.train" and in the destructor.

* * @see org.opencv.ml.CvGBTrees.clear */ public void clear() { clear_0(nativeObj); return; } // // C++: float CvGBTrees::predict(Mat sample, Mat missing = cv::Mat(), Range slice = cv::Range::all(), int k = -1) // /** *

Predicts a response for an input sample.

* *

The method predicts the response corresponding to the given sample (see * "Predicting with GBT"). * The result is either the class label or the estimated function value. The * "CvGBTrees.predict" method enables using the parallel version of the GBT * model prediction if the OpenCV is built with the TBB library. In this case, * predictions of single trees are computed in a parallel fashion.

* * @param sample Input feature vector that has the same format as every training * set element. If not all the variables were actually used during training, * sample contains forged values at the appropriate places. * @param missing Missing values mask, which is a dimensional matrix of the same * size as sample having the CV_8U type. * 1 corresponds to the missing value in the same position in the * sample vector. If there are no missing values in the feature * vector, an empty matrix can be passed instead of the missing mask. * @param slice Parameter defining the part of the ensemble used for prediction. *

If slice = Range.all(), all trees are used. Use this parameter * to get predictions of the GBT models with different ensemble sizes learning * only one model.

* @param k Number of tree ensembles built in case of the classification problem * (see "Training GBT"). Use this parameter to change the output to sum of the * trees' predictions in the k-th ensemble only. To get the total * GBT model prediction, k value must be -1. For regression * problems, k is also equal to -1. * * @see org.opencv.ml.CvGBTrees.predict */ public float predict(Mat sample, Mat missing, Range slice, int k) { float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, k); return retVal; } /** *

Predicts a response for an input sample.

* *

The method predicts the response corresponding to the given sample (see * "Predicting with GBT"). * The result is either the class label or the estimated function value. The * "CvGBTrees.predict" method enables using the parallel version of the GBT * model prediction if the OpenCV is built with the TBB library. In this case, * predictions of single trees are computed in a parallel fashion.

* * @param sample Input feature vector that has the same format as every training * set element. If not all the variables were actually used during training, * sample contains forged values at the appropriate places. * * @see org.opencv.ml.CvGBTrees.predict */ public float predict(Mat sample) { float retVal = predict_1(nativeObj, sample.nativeObj); return retVal; } // // C++: bool CvGBTrees::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvGBTreesParams params = CvGBTreesParams(), bool update = false) // /** *

Trains a Gradient boosted tree model.

* *

The first train method follows the common template (see "CvStatModel.train"). * Both tflag values (CV_ROW_SAMPLE, CV_COL_SAMPLE) * are supported. * trainData must be of the CV_32F type. * responses must be a matrix of type CV_32S or * CV_32F. In both cases it is converted into the CV_32F * matrix inside the training procedure. varIdx and * sampleIdx must be a list of indices (CV_32S) or a * mask (CV_8U or CV_8S). update is a * dummy parameter.

* *

The second form of "CvGBTrees.train" function uses "CvMLData" as a data set * container. update is still a dummy parameter.

* *

All parameters specific to the GBT model are passed into the training * function as a "CvGBTreesParams" structure.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param varType a varType * @param missingDataMask a missingDataMask * @param params a params * @param update a update * * @see org.opencv.ml.CvGBTrees.train */ public boolean train(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvGBTreesParams params, boolean update) { boolean retVal = train_0(nativeObj, trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj, update); return retVal; } /** *

Trains a Gradient boosted tree model.

* *

The first train method follows the common template (see "CvStatModel.train"). * Both tflag values (CV_ROW_SAMPLE, CV_COL_SAMPLE) * are supported. * trainData must be of the CV_32F type. * responses must be a matrix of type CV_32S or * CV_32F. In both cases it is converted into the CV_32F * matrix inside the training procedure. varIdx and * sampleIdx must be a list of indices (CV_32S) or a * mask (CV_8U or CV_8S). update is a * dummy parameter.

* *

The second form of "CvGBTrees.train" function uses "CvMLData" as a data set * container. update is still a dummy parameter.

* *

All parameters specific to the GBT model are passed into the training * function as a "CvGBTreesParams" structure.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * * @see org.opencv.ml.CvGBTrees.train */ public boolean train(Mat trainData, int tflag, Mat responses) { boolean retVal = train_1(nativeObj, trainData.nativeObj, tflag, responses.nativeObj); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: CvGBTrees::CvGBTrees() private static native long CvGBTrees_0(); // C++: CvGBTrees::CvGBTrees(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvGBTreesParams params = CvGBTreesParams()) private static native long CvGBTrees_1(long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj); private static native long CvGBTrees_2(long trainData_nativeObj, int tflag, long responses_nativeObj); // C++: void CvGBTrees::clear() private static native void clear_0(long nativeObj); // C++: float CvGBTrees::predict(Mat sample, Mat missing = cv::Mat(), Range slice = cv::Range::all(), int k = -1) private static native float predict_0(long nativeObj, long sample_nativeObj, long missing_nativeObj, int slice_start, int slice_end, int k); private static native float predict_1(long nativeObj, long sample_nativeObj); // C++: bool CvGBTrees::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvGBTreesParams params = CvGBTreesParams(), bool update = false) private static native boolean train_0(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj, boolean update); private static native boolean train_1(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy