All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.ml.CvNormalBayesClassifier Maven / Gradle / Ivy

There is a newer version: 1.1.1
Show newest version

//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;

import org.opencv.core.Mat;

// C++: class CvNormalBayesClassifier
/**
 * 

Bayes classifier for normally distributed data.

* * @see org.opencv.ml.CvNormalBayesClassifier : public CvStatModel */ public class CvNormalBayesClassifier extends CvStatModel { protected CvNormalBayesClassifier(long addr) { super(addr); } // // C++: CvNormalBayesClassifier::CvNormalBayesClassifier() // /** *

Default and training constructors.

* *

The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.

* * @see org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier */ public CvNormalBayesClassifier() { super( CvNormalBayesClassifier_0() ); return; } // // C++: CvNormalBayesClassifier::CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat()) // /** *

Default and training constructors.

* *

The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.

* * @param trainData a trainData * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * * @see org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier */ public CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx, Mat sampleIdx) { super( CvNormalBayesClassifier_1(trainData.nativeObj, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj) ); return; } /** *

Default and training constructors.

* *

The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.

* * @param trainData a trainData * @param responses a responses * * @see org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier */ public CvNormalBayesClassifier(Mat trainData, Mat responses) { super( CvNormalBayesClassifier_2(trainData.nativeObj, responses.nativeObj) ); return; } // // C++: void CvNormalBayesClassifier::clear() // public void clear() { clear_0(nativeObj); return; } // // C++: float CvNormalBayesClassifier::predict(Mat samples, Mat* results = 0) // /** *

Predicts the response for sample(s).

* *

The method estimates the most probable classes for input vectors. Input * vectors (one or more) are stored as rows of the matrix samples. * In case of multiple input vectors, there should be one output vector * results. The predicted class for a single input vector is * returned by the method.

* *

The function is parallelized with the TBB library.

* * @param samples a samples * @param results a results * * @see org.opencv.ml.CvNormalBayesClassifier.predict */ public float predict(Mat samples, Mat results) { float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj); return retVal; } /** *

Predicts the response for sample(s).

* *

The method estimates the most probable classes for input vectors. Input * vectors (one or more) are stored as rows of the matrix samples. * In case of multiple input vectors, there should be one output vector * results. The predicted class for a single input vector is * returned by the method.

* *

The function is parallelized with the TBB library.

* * @param samples a samples * * @see org.opencv.ml.CvNormalBayesClassifier.predict */ public float predict(Mat samples) { float retVal = predict_1(nativeObj, samples.nativeObj); return retVal; } // // C++: bool CvNormalBayesClassifier::train(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), bool update = false) // /** *

Trains the model.

* *

The method trains the Normal Bayes classifier. It follows the conventions of * the generic "CvStatModel.train" approach with the following limitations:

*
    *
  • Only CV_ROW_SAMPLE data layout is supported. *
  • Input variables are all ordered. *
  • Output variable is categorical, which means that elements of * responses must be integer numbers, though the vector may have * the CV_32FC1 type. *
  • Missing measurements are not supported. *
* * @param trainData a trainData * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param update Identifies whether the model should be trained from scratch * (update=false) or should be updated using the new training data * (update=true). * * @see org.opencv.ml.CvNormalBayesClassifier.train */ public boolean train(Mat trainData, Mat responses, Mat varIdx, Mat sampleIdx, boolean update) { boolean retVal = train_0(nativeObj, trainData.nativeObj, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, update); return retVal; } /** *

Trains the model.

* *

The method trains the Normal Bayes classifier. It follows the conventions of * the generic "CvStatModel.train" approach with the following limitations:

*
    *
  • Only CV_ROW_SAMPLE data layout is supported. *
  • Input variables are all ordered. *
  • Output variable is categorical, which means that elements of * responses must be integer numbers, though the vector may have * the CV_32FC1 type. *
  • Missing measurements are not supported. *
* * @param trainData a trainData * @param responses a responses * * @see org.opencv.ml.CvNormalBayesClassifier.train */ public boolean train(Mat trainData, Mat responses) { boolean retVal = train_1(nativeObj, trainData.nativeObj, responses.nativeObj); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: CvNormalBayesClassifier::CvNormalBayesClassifier() private static native long CvNormalBayesClassifier_0(); // C++: CvNormalBayesClassifier::CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat()) private static native long CvNormalBayesClassifier_1(long trainData_nativeObj, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj); private static native long CvNormalBayesClassifier_2(long trainData_nativeObj, long responses_nativeObj); // C++: void CvNormalBayesClassifier::clear() private static native void clear_0(long nativeObj); // C++: float CvNormalBayesClassifier::predict(Mat samples, Mat* results = 0) private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj); private static native float predict_1(long nativeObj, long samples_nativeObj); // C++: bool CvNormalBayesClassifier::train(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), bool update = false) private static native boolean train_0(long nativeObj, long trainData_nativeObj, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, boolean update); private static native boolean train_1(long nativeObj, long trainData_nativeObj, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy