All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.video.Video Maven / Gradle / Ivy


//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.video;

import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
import org.opencv.core.RotatedRect;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;

public class Video {

    private static final int
            CV_LKFLOW_INITIAL_GUESSES = 4,
            CV_LKFLOW_GET_MIN_EIGENVALS = 8;


    public static final int
            OPTFLOW_USE_INITIAL_FLOW = CV_LKFLOW_INITIAL_GUESSES,
            OPTFLOW_LK_GET_MIN_EIGENVALS = CV_LKFLOW_GET_MIN_EIGENVALS,
            OPTFLOW_FARNEBACK_GAUSSIAN = 256;


    //
    // C++:  RotatedRect CamShift(Mat probImage, Rect& window, TermCriteria criteria)
    //

/**
 * 

Finds an object center, size, and orientation.

* *

The function implements the CAMSHIFT object tracking algorithm [Bradski98]. * First, it finds an object center using "meanShift" and then adjusts the * window size and finds the optimal rotation. The function returns the rotated * rectangle structure that includes the object position, size, and orientation. * The next position of the search window can be obtained with RotatedRect.boundingRect().

* *

See the OpenCV sample camshiftdemo.c that tracks colored * objects.

* * @param probImage Back projection of the object histogram. See * "calcBackProject". * @param window Initial search window. * @param criteria Stop criteria for the underlying "meanShift". * *

:returns: (in old interfaces) Number of iterations CAMSHIFT took to converge

* * @see org.opencv.video.Video.CamShift */ public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria) { double[] window_out = new double[4]; RotatedRect retVal = new RotatedRect(CamShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon)); if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } return retVal; } // // C++: int buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) // /** *

Constructs the image pyramid which can be passed to "calcOpticalFlowPyrLK".

* * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than * winSize argument of "calcOpticalFlowPyrLK". It is needed to * calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * @param withDerivatives set to precompute gradients for the every pyramid * level. If pyramid is constructed without the gradients then "calcOpticalFlowPyrLK" * will calculate them internally. * @param pyrBorder the border mode for pyramid layers. * @param derivBorder the border mode for gradients. * @param tryReuseInputImage put ROI of input image into the pyramid if * possible. You can pass false to force data copying. * *

:return: number of levels in constructed pyramid. Can be less than * maxLevel.

* * @see org.opencv.video.Video.buildOpticalFlowPyramid */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_0(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); return retVal; } /** *

Constructs the image pyramid which can be passed to "calcOpticalFlowPyrLK".

* * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than * winSize argument of "calcOpticalFlowPyrLK". It is needed to * calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * * @see org.opencv.video.Video.buildOpticalFlowPyramid */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_1(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); return retVal; } // // C++: double calcGlobalOrientation(Mat orientation, Mat mask, Mat mhi, double timestamp, double duration) // /** *

Calculates a global motion orientation in a selected region.

* *

The function calculates an average motion direction in the selected region * and returns the angle between 0 degrees and 360 degrees. The average * direction is computed from the weighted orientation histogram, where a recent * motion has a larger weight and the motion occurred in the past has a smaller * weight, as recorded in mhi.

* * @param orientation Motion gradient orientation image calculated by the * function "calcMotionGradient". * @param mask Mask image. It may be a conjunction of a valid gradient mask, * also calculated by "calcMotionGradient", and the mask of a region whose * direction needs to be calculated. * @param mhi Motion history image calculated by "updateMotionHistory". * @param timestamp Timestamp passed to "updateMotionHistory". * @param duration Maximum duration of a motion track in milliseconds, passed to * "updateMotionHistory". * * @see org.opencv.video.Video.calcGlobalOrientation */ public static double calcGlobalOrientation(Mat orientation, Mat mask, Mat mhi, double timestamp, double duration) { double retVal = calcGlobalOrientation_0(orientation.nativeObj, mask.nativeObj, mhi.nativeObj, timestamp, duration); return retVal; } // // C++: void calcMotionGradient(Mat mhi, Mat& mask, Mat& orientation, double delta1, double delta2, int apertureSize = 3) // /** *

Calculates a gradient orientation of a motion history image.

* *

The function calculates a gradient orientation at each pixel (x, y) * as:

* *

orientation(x,y)= arctan((dmhi/dy)/(dmhi/dx))

* *

In fact, "fastAtan2" and "phase" are used so that the computed angle is * measured in degrees and covers the full range 0..360. Also, the * mask is filled to indicate pixels where the computed angle is * valid.

* * @param mhi Motion history single-channel floating-point image. * @param mask Output mask image that has the type CV_8UC1 and the * same size as mhi. Its non-zero elements mark pixels where the * motion gradient data is correct. * @param orientation Output motion gradient orientation image that has the same * type and the same size as mhi. Each pixel of the image is a * motion orientation, from 0 to 360 degrees. * @param delta1 Minimal (or maximal) allowed difference between * mhi values within a pixel neighborhood. * @param delta2 Maximal (or minimal) allowed difference between * mhi values within a pixel neighborhood. That is, the function * finds the minimum (m(x,y)) and maximum (M(x,y)) * mhi values over 3 x 3 neighborhood of each pixel and * marks the motion orientation at (x, y) as valid only if * *

min(delta1, delta2) <= M(x,y)-m(x,y) <= max(delta1, delta2).

* @param apertureSize Aperture size of the "Sobel" operator. * * @see org.opencv.video.Video.calcMotionGradient */ public static void calcMotionGradient(Mat mhi, Mat mask, Mat orientation, double delta1, double delta2, int apertureSize) { calcMotionGradient_0(mhi.nativeObj, mask.nativeObj, orientation.nativeObj, delta1, delta2, apertureSize); return; } /** *

Calculates a gradient orientation of a motion history image.

* *

The function calculates a gradient orientation at each pixel (x, y) * as:

* *

orientation(x,y)= arctan((dmhi/dy)/(dmhi/dx))

* *

In fact, "fastAtan2" and "phase" are used so that the computed angle is * measured in degrees and covers the full range 0..360. Also, the * mask is filled to indicate pixels where the computed angle is * valid.

* * @param mhi Motion history single-channel floating-point image. * @param mask Output mask image that has the type CV_8UC1 and the * same size as mhi. Its non-zero elements mark pixels where the * motion gradient data is correct. * @param orientation Output motion gradient orientation image that has the same * type and the same size as mhi. Each pixel of the image is a * motion orientation, from 0 to 360 degrees. * @param delta1 Minimal (or maximal) allowed difference between * mhi values within a pixel neighborhood. * @param delta2 Maximal (or minimal) allowed difference between * mhi values within a pixel neighborhood. That is, the function * finds the minimum (m(x,y)) and maximum (M(x,y)) * mhi values over 3 x 3 neighborhood of each pixel and * marks the motion orientation at (x, y) as valid only if * *

min(delta1, delta2) <= M(x,y)-m(x,y) <= max(delta1, delta2).

* * @see org.opencv.video.Video.calcMotionGradient */ public static void calcMotionGradient(Mat mhi, Mat mask, Mat orientation, double delta1, double delta2) { calcMotionGradient_1(mhi.nativeObj, mask.nativeObj, orientation.nativeObj, delta1, delta2); return; } // // C++: void calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) // /** *

Computes a dense optical flow using the Gunnar Farneback's algorithm.

* *

The function finds an optical flow for each prev pixel using the * [Farneback2003] algorithm so that

* *

prev(y,x) ~ next(y + flow(y,x)[1], x + flow(y,x)[0])

* * @param prev first 8-bit single-channel input image. * @param next second input image of the same size and the same type as * prev. * @param flow computed flow image that has the same size as prev * and type CV_32FC2. * @param pyr_scale parameter, specifying the image scale (<1) to build pyramids * for each image; pyr_scale=0.5 means a classical pyramid, where * each next layer is twice smaller than the previous one. * @param levels number of pyramid layers including the initial image; * levels=1 means that no extra layers are created and only the * original images are used. * @param winsize averaging window size; larger values increase the algorithm * robustness to image noise and give more chances for fast motion detection, * but yield more blurred motion field. * @param iterations number of iterations the algorithm does at each pyramid * level. * @param poly_n size of the pixel neighborhood used to find polynomial * expansion in each pixel; larger values mean that the image will be * approximated with smoother surfaces, yielding more robust algorithm and more * blurred motion field, typically poly_n =5 or 7. * @param poly_sigma standard deviation of the Gaussian that is used to smooth * derivatives used as a basis for the polynomial expansion; for * poly_n=5, you can set poly_sigma=1.1, for * poly_n=7, a good value would be poly_sigma=1.5. * @param flags operation flags that can be a combination of the following: *
    *
  • OPTFLOW_USE_INITIAL_FLOW uses the input flow as an * initial flow approximation. *
  • OPTFLOW_FARNEBACK_GAUSSIAN uses the Gaussian winsizexwinsize * filter instead of a box filter of the same size for optical flow estimation; * usually, this option gives z more accurate flow than with a box filter, at * the cost of lower speed; normally, winsize for a Gaussian window * should be set to a larger value to achieve the same level of robustness. *
* * @see org.opencv.video.Video.calcOpticalFlowFarneback */ public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) { calcOpticalFlowFarneback_0(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags); return; } // // C++: void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) // /** *

Calculates an optical flow for a sparse feature set using the iterative * Lucas-Kanade method with pyramids.

* *

The function implements a sparse iterative version of the Lucas-Kanade * optical flow in pyramids. See [Bouguet00]. The function is parallelized with * the TBB library.

* * @param prevImg first 8-bit input image or pyramid constructed by * "buildOpticalFlowPyramid". * @param nextImg second input image or pyramid of the same size and the same * type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; * point coordinates must be single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision * floating-point coordinates) containing the calculated new positions of input * features in the second image; when OPTFLOW_USE_INITIAL_FLOW flag * is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the * vector is set to 1 if the flow for the corresponding features has been found, * otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an * error for the corresponding feature, type of the error measure can be set in * flags parameter; if the flow wasn't found then the error is not * defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids * are not used (single level), if set to 1, two levels are used, and so on; if * pyramids are passed to input then algorithm will use as many levels as * pyramids have but no more than maxLevel. * @param criteria parameter, specifying the termination criteria of the * iterative search algorithm (after the specified maximum number of iterations * criteria.maxCount or when the search window moves by less than * criteria.epsilon. * @param flags operation flags: *
    *
  • OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in * nextPts; if the flag is not set, then prevPts is * copied to nextPts and is considered the initial estimate. *
  • OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error * measure (see minEigThreshold description); if the flag is not * set, then L1 distance between patches around the original and a moved point, * divided by number of pixels in a window, is used as a error measure. *
* @param minEigThreshold the algorithm calculates the minimum eigen value of a * 2x2 normal matrix of optical flow equations (this matrix is called a spatial * gradient matrix in [Bouguet00]), divided by number of pixels in a window; if * this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove * bad points and get a performance boost. * * @see org.opencv.video.Video.calcOpticalFlowPyrLK */ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_0(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags, minEigThreshold); return; } /** *

Calculates an optical flow for a sparse feature set using the iterative * Lucas-Kanade method with pyramids.

* *

The function implements a sparse iterative version of the Lucas-Kanade * optical flow in pyramids. See [Bouguet00]. The function is parallelized with * the TBB library.

* * @param prevImg first 8-bit input image or pyramid constructed by * "buildOpticalFlowPyramid". * @param nextImg second input image or pyramid of the same size and the same * type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; * point coordinates must be single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision * floating-point coordinates) containing the calculated new positions of input * features in the second image; when OPTFLOW_USE_INITIAL_FLOW flag * is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the * vector is set to 1 if the flow for the corresponding features has been found, * otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an * error for the corresponding feature, type of the error measure can be set in * flags parameter; if the flow wasn't found then the error is not * defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids * are not used (single level), if set to 1, two levels are used, and so on; if * pyramids are passed to input then algorithm will use as many levels as * pyramids have but no more than maxLevel. * * @see org.opencv.video.Video.calcOpticalFlowPyrLK */ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_1(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel); return; } /** *

Calculates an optical flow for a sparse feature set using the iterative * Lucas-Kanade method with pyramids.

* *

The function implements a sparse iterative version of the Lucas-Kanade * optical flow in pyramids. See [Bouguet00]. The function is parallelized with * the TBB library.

* * @param prevImg first 8-bit input image or pyramid constructed by * "buildOpticalFlowPyramid". * @param nextImg second input image or pyramid of the same size and the same * type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; * point coordinates must be single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision * floating-point coordinates) containing the calculated new positions of input * features in the second image; when OPTFLOW_USE_INITIAL_FLOW flag * is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the * vector is set to 1 if the flow for the corresponding features has been found, * otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an * error for the corresponding feature, type of the error measure can be set in * flags parameter; if the flow wasn't found then the error is not * defined (use the status parameter to find such cases). * * @see org.opencv.video.Video.calcOpticalFlowPyrLK */ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_2(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj); return; } // // C++: void calcOpticalFlowSF(Mat from, Mat to, Mat flow, int layers, int averaging_block_size, int max_flow) // /** *

Calculate an optical flow using "SimpleFlow" algorithm.

* *

See [Tao2012]. And site of project - http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/.

* * @param from a from * @param to a to * @param flow a flow * @param layers Number of layers * @param averaging_block_size Size of block through which we sum up when * calculate cost function for pixel * @param max_flow maximal flow that we search at each level * * @see org.opencv.video.Video.calcOpticalFlowSF */ public static void calcOpticalFlowSF(Mat from, Mat to, Mat flow, int layers, int averaging_block_size, int max_flow) { calcOpticalFlowSF_0(from.nativeObj, to.nativeObj, flow.nativeObj, layers, averaging_block_size, max_flow); return; } // // C++: void calcOpticalFlowSF(Mat from, Mat to, Mat flow, int layers, int averaging_block_size, int max_flow, double sigma_dist, double sigma_color, int postprocess_window, double sigma_dist_fix, double sigma_color_fix, double occ_thr, int upscale_averaging_radius, double upscale_sigma_dist, double upscale_sigma_color, double speed_up_thr) // /** *

Calculate an optical flow using "SimpleFlow" algorithm.

* *

See [Tao2012]. And site of project - http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/.

* * @param from a from * @param to a to * @param flow a flow * @param layers Number of layers * @param averaging_block_size Size of block through which we sum up when * calculate cost function for pixel * @param max_flow maximal flow that we search at each level * @param sigma_dist vector smooth spatial sigma parameter * @param sigma_color vector smooth color sigma parameter * @param postprocess_window window size for postprocess cross bilateral filter * @param sigma_dist_fix spatial sigma for postprocess cross bilateralf filter * @param sigma_color_fix color sigma for postprocess cross bilateral filter * @param occ_thr threshold for detecting occlusions * @param upscale_averaging_radius a upscale_averaging_radius * @param upscale_sigma_dist spatial sigma for bilateral upscale operation * @param upscale_sigma_color color sigma for bilateral upscale operation * @param speed_up_thr threshold to detect point with irregular flow - where * flow should be recalculated after upscale * * @see org.opencv.video.Video.calcOpticalFlowSF */ public static void calcOpticalFlowSF(Mat from, Mat to, Mat flow, int layers, int averaging_block_size, int max_flow, double sigma_dist, double sigma_color, int postprocess_window, double sigma_dist_fix, double sigma_color_fix, double occ_thr, int upscale_averaging_radius, double upscale_sigma_dist, double upscale_sigma_color, double speed_up_thr) { calcOpticalFlowSF_1(from.nativeObj, to.nativeObj, flow.nativeObj, layers, averaging_block_size, max_flow, sigma_dist, sigma_color, postprocess_window, sigma_dist_fix, sigma_color_fix, occ_thr, upscale_averaging_radius, upscale_sigma_dist, upscale_sigma_color, speed_up_thr); return; } // // C++: Mat estimateRigidTransform(Mat src, Mat dst, bool fullAffine) // /** *

Computes an optimal affine transformation between two 2D point sets.

* *

The function finds an optimal affine transform *[A|b]* (a 2 x 3 * floating-point matrix) that approximates best the affine transformation * between:

*
    *
  • Two point sets *
  • Two raster images. In this case, the function first finds some * features in the src image and finds the corresponding features * in dst image. After that, the problem is reduced to the first * case. *
* *

In case of point sets, the problem is formulated as follows: you need to find * a 2x2 matrix *A* and 2x1 vector *b* so that:

* *

[A^*|b^*] = arg min _([A|b]) sum _i|dst[i] - A (src[i])^T - b| ^2

* *

where src[i] and dst[i] are the i-th points in * src and dst, respectively

* *

[A|b] can be either arbitrary (when fullAffine=true) or * have a form of

* *

a_11 a_12 b_1 * -a_12 a_11 b_2

* *

when fullAffine=false.

* * @param src First input 2D point set stored in std.vector or * Mat, or an image stored in Mat. * @param dst Second input 2D point set of the same size and the same type as * A, or another image. * @param fullAffine If true, the function finds an optimal affine * transformation with no additional restrictions (6 degrees of freedom). * Otherwise, the class of transformations to choose from is limited to * combinations of translation, rotation, and uniform scaling (5 degrees of * freedom). * * @see org.opencv.video.Video.estimateRigidTransform * @see org.opencv.calib3d.Calib3d#findHomography * @see org.opencv.imgproc.Imgproc#getAffineTransform * @see org.opencv.imgproc.Imgproc#getPerspectiveTransform */ public static Mat estimateRigidTransform(Mat src, Mat dst, boolean fullAffine) { Mat retVal = new Mat(estimateRigidTransform_0(src.nativeObj, dst.nativeObj, fullAffine)); return retVal; } // // C++: int meanShift(Mat probImage, Rect& window, TermCriteria criteria) // /** *

Finds an object on a back projection image.

* *

The function implements the iterative object search algorithm. It takes the * input back projection of an object and the initial position. The mass center * in window of the back projection image is computed and the * search window center shifts to the mass center. The procedure is repeated * until the specified number of iterations criteria.maxCount is * done or until the window center shifts by less than criteria.epsilon. * The algorithm is used inside "CamShift" and, unlike "CamShift", the search * window size or orientation do not change during the search. You can simply * pass the output of "calcBackProject" to this function. But better results can * be obtained if you pre-filter the back projection and remove the noise. For * example, you can do this by retrieving connected components with * "findContours", throwing away contours with small area ("contourArea"), and * rendering the remaining contours with "drawContours".

* * @param probImage Back projection of the object histogram. See * "calcBackProject" for details. * @param window Initial search window. * @param criteria Stop criteria for the iterative search algorithm. * *

:returns: Number of iterations CAMSHIFT took to converge.

* * @see org.opencv.video.Video.meanShift */ public static int meanShift(Mat probImage, Rect window, TermCriteria criteria) { double[] window_out = new double[4]; int retVal = meanShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon); if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } return retVal; } // // C++: void segmentMotion(Mat mhi, Mat& segmask, vector_Rect& boundingRects, double timestamp, double segThresh) // /** *

Splits a motion history image into a few parts corresponding to separate * independent motions (for example, left hand, right hand).

* *

The function finds all of the motion segments and marks them in * segmask with individual values (1,2,...). It also computes a * vector with ROIs of motion connected components. After that the motion * direction for every component can be calculated with "calcGlobalOrientation" * using the extracted mask of the particular component.

* * @param mhi Motion history image. * @param segmask Image where the found mask should be stored, single-channel, * 32-bit floating-point. * @param boundingRects Vector containing ROIs of motion connected components. * @param timestamp Current time in milliseconds or other units. * @param segThresh Segmentation threshold that is recommended to be equal to * the interval between motion history "steps" or greater. * * @see org.opencv.video.Video.segmentMotion */ public static void segmentMotion(Mat mhi, Mat segmask, MatOfRect boundingRects, double timestamp, double segThresh) { Mat boundingRects_mat = boundingRects; segmentMotion_0(mhi.nativeObj, segmask.nativeObj, boundingRects_mat.nativeObj, timestamp, segThresh); return; } // // C++: void updateMotionHistory(Mat silhouette, Mat& mhi, double timestamp, double duration) // /** *

Updates the motion history image by a moving silhouette.

* *

The function updates the motion history image as follows:

* *

mhi(x,y)= timestamp if silhouette(x,y) != 0; 0 if silhouette(x,y) = 0 and * mhi <(timestamp - duration); mhi(x,y) otherwise

* *

That is, MHI pixels where the motion occurs are set to the current * timestamp, while the pixels where the motion happened last time * a long time ago are cleared.

* *

The function, together with "calcMotionGradient" and "calcGlobalOrientation", * implements a motion templates technique described in [Davis97] and * [Bradski00]. * See also the OpenCV sample motempl.c that demonstrates the use * of all the motion template functions.

* * @param silhouette Silhouette mask that has non-zero pixels where the motion * occurs. * @param mhi Motion history image that is updated by the function * (single-channel, 32-bit floating-point). * @param timestamp Current time in milliseconds or other units. * @param duration Maximal duration of the motion track in the same units as * timestamp. * * @see org.opencv.video.Video.updateMotionHistory */ public static void updateMotionHistory(Mat silhouette, Mat mhi, double timestamp, double duration) { updateMotionHistory_0(silhouette.nativeObj, mhi.nativeObj, timestamp, duration); return; } // C++: RotatedRect CamShift(Mat probImage, Rect& window, TermCriteria criteria) private static native double[] CamShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); // C++: int buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) private static native int buildOpticalFlowPyramid_0(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage); private static native int buildOpticalFlowPyramid_1(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); // C++: double calcGlobalOrientation(Mat orientation, Mat mask, Mat mhi, double timestamp, double duration) private static native double calcGlobalOrientation_0(long orientation_nativeObj, long mask_nativeObj, long mhi_nativeObj, double timestamp, double duration); // C++: void calcMotionGradient(Mat mhi, Mat& mask, Mat& orientation, double delta1, double delta2, int apertureSize = 3) private static native void calcMotionGradient_0(long mhi_nativeObj, long mask_nativeObj, long orientation_nativeObj, double delta1, double delta2, int apertureSize); private static native void calcMotionGradient_1(long mhi_nativeObj, long mask_nativeObj, long orientation_nativeObj, double delta1, double delta2); // C++: void calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) private static native void calcOpticalFlowFarneback_0(long prev_nativeObj, long next_nativeObj, long flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags); // C++: void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) private static native void calcOpticalFlowPyrLK_0(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold); private static native void calcOpticalFlowPyrLK_1(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); private static native void calcOpticalFlowPyrLK_2(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj); // C++: void calcOpticalFlowSF(Mat from, Mat to, Mat flow, int layers, int averaging_block_size, int max_flow) private static native void calcOpticalFlowSF_0(long from_nativeObj, long to_nativeObj, long flow_nativeObj, int layers, int averaging_block_size, int max_flow); // C++: void calcOpticalFlowSF(Mat from, Mat to, Mat flow, int layers, int averaging_block_size, int max_flow, double sigma_dist, double sigma_color, int postprocess_window, double sigma_dist_fix, double sigma_color_fix, double occ_thr, int upscale_averaging_radius, double upscale_sigma_dist, double upscale_sigma_color, double speed_up_thr) private static native void calcOpticalFlowSF_1(long from_nativeObj, long to_nativeObj, long flow_nativeObj, int layers, int averaging_block_size, int max_flow, double sigma_dist, double sigma_color, int postprocess_window, double sigma_dist_fix, double sigma_color_fix, double occ_thr, int upscale_averaging_radius, double upscale_sigma_dist, double upscale_sigma_color, double speed_up_thr); // C++: Mat estimateRigidTransform(Mat src, Mat dst, bool fullAffine) private static native long estimateRigidTransform_0(long src_nativeObj, long dst_nativeObj, boolean fullAffine); // C++: int meanShift(Mat probImage, Rect& window, TermCriteria criteria) private static native int meanShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); // C++: void segmentMotion(Mat mhi, Mat& segmask, vector_Rect& boundingRects, double timestamp, double segThresh) private static native void segmentMotion_0(long mhi_nativeObj, long segmask_nativeObj, long boundingRects_mat_nativeObj, double timestamp, double segThresh); // C++: void updateMotionHistory(Mat silhouette, Mat& mhi, double timestamp, double duration) private static native void updateMotionHistory_0(long silhouette_nativeObj, long mhi_nativeObj, double timestamp, double duration); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy