All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.ml.CvRTrees Maven / Gradle / Ivy


//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;

import org.opencv.core.Mat;

// C++: class CvRTrees
/**
 * 

The class implements the random forest predictor as described in the * beginning of this section.

* * @see org.opencv.ml.CvRTrees : public CvStatModel */ public class CvRTrees extends CvStatModel { protected CvRTrees(long addr) { super(addr); } // // C++: CvRTrees::CvRTrees() // public CvRTrees() { super( CvRTrees_0() ); return; } // // C++: void CvRTrees::clear() // public void clear() { clear_0(nativeObj); return; } // // C++: Mat CvRTrees::getVarImportance() // /** *

Returns the variable importance array.

* *

The method returns the variable importance vector, computed at the training * stage when CvRTParams.calc_var_importance is set to true. If * this flag was set to false, the NULL pointer is returned. This * differs from the decision trees where variable importance can be computed * anytime after the training.

* * @see org.opencv.ml.CvRTrees.getVarImportance */ public Mat getVarImportance() { Mat retVal = new Mat(getVarImportance_0(nativeObj)); return retVal; } // // C++: float CvRTrees::predict(Mat sample, Mat missing = cv::Mat()) // /** *

Predicts the output for an input sample.

* *

The input parameters of the prediction method are the same as in * "CvDTree.predict" but the return value type is different. This method * returns the cumulative result from all the trees in the forest (the class * that receives the majority of voices, or the mean of the regression function * estimates).

* * @param sample Sample for classification. * @param missing Optional missing measurement mask of the sample. * * @see org.opencv.ml.CvRTrees.predict */ public float predict(Mat sample, Mat missing) { float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj); return retVal; } /** *

Predicts the output for an input sample.

* *

The input parameters of the prediction method are the same as in * "CvDTree.predict" but the return value type is different. This method * returns the cumulative result from all the trees in the forest (the class * that receives the majority of voices, or the mean of the regression function * estimates).

* * @param sample Sample for classification. * * @see org.opencv.ml.CvRTrees.predict */ public float predict(Mat sample) { float retVal = predict_1(nativeObj, sample.nativeObj); return retVal; } // // C++: float CvRTrees::predict_prob(Mat sample, Mat missing = cv::Mat()) // /** *

Returns a fuzzy-predicted class label.

* *

The function works for binary classification problems only. It returns the * number between 0 and 1. This number represents probability or confidence of * the sample belonging to the second class. It is calculated as the proportion * of decision trees that classified the sample to the second class.

* * @param sample Sample for classification. * @param missing Optional missing measurement mask of the sample. * * @see org.opencv.ml.CvRTrees.predict_prob */ public float predict_prob(Mat sample, Mat missing) { float retVal = predict_prob_0(nativeObj, sample.nativeObj, missing.nativeObj); return retVal; } /** *

Returns a fuzzy-predicted class label.

* *

The function works for binary classification problems only. It returns the * number between 0 and 1. This number represents probability or confidence of * the sample belonging to the second class. It is calculated as the proportion * of decision trees that classified the sample to the second class.

* * @param sample Sample for classification. * * @see org.opencv.ml.CvRTrees.predict_prob */ public float predict_prob(Mat sample) { float retVal = predict_prob_1(nativeObj, sample.nativeObj); return retVal; } // // C++: bool CvRTrees::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvRTParams params = CvRTParams()) // /** *

Trains the Random Trees model.

* *

The method "CvRTrees.train" is very similar to the method "CvDTree.train" * and follows the generic method "CvStatModel.train" conventions. All the * parameters specific to the algorithm training are passed as a "CvRTParams" * instance. The estimate of the training error (oob-error) is * stored in the protected class member oob_error.

* *

The function is parallelized with the TBB library.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param varType a varType * @param missingDataMask a missingDataMask * @param params a params * * @see org.opencv.ml.CvRTrees.train */ public boolean train(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvRTParams params) { boolean retVal = train_0(nativeObj, trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj); return retVal; } /** *

Trains the Random Trees model.

* *

The method "CvRTrees.train" is very similar to the method "CvDTree.train" * and follows the generic method "CvStatModel.train" conventions. All the * parameters specific to the algorithm training are passed as a "CvRTParams" * instance. The estimate of the training error (oob-error) is * stored in the protected class member oob_error.

* *

The function is parallelized with the TBB library.

* * @param trainData a trainData * @param tflag a tflag * @param responses a responses * * @see org.opencv.ml.CvRTrees.train */ public boolean train(Mat trainData, int tflag, Mat responses) { boolean retVal = train_1(nativeObj, trainData.nativeObj, tflag, responses.nativeObj); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: CvRTrees::CvRTrees() private static native long CvRTrees_0(); // C++: void CvRTrees::clear() private static native void clear_0(long nativeObj); // C++: Mat CvRTrees::getVarImportance() private static native long getVarImportance_0(long nativeObj); // C++: float CvRTrees::predict(Mat sample, Mat missing = cv::Mat()) private static native float predict_0(long nativeObj, long sample_nativeObj, long missing_nativeObj); private static native float predict_1(long nativeObj, long sample_nativeObj); // C++: float CvRTrees::predict_prob(Mat sample, Mat missing = cv::Mat()) private static native float predict_prob_0(long nativeObj, long sample_nativeObj, long missing_nativeObj); private static native float predict_prob_1(long nativeObj, long sample_nativeObj); // C++: bool CvRTrees::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvRTParams params = CvRTParams()) private static native boolean train_0(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj); private static native boolean train_1(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy