All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.objdetect.Objdetect Maven / Gradle / Ivy


//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.objdetect;

import org.opencv.core.Mat;
import org.opencv.core.MatOfInt;
import org.opencv.core.MatOfRect;

public class Objdetect {

    public static final int
            CASCADE_DO_CANNY_PRUNING = 1,
            CASCADE_SCALE_IMAGE = 2,
            CASCADE_FIND_BIGGEST_OBJECT = 4,
            CASCADE_DO_ROUGH_SEARCH = 8;


    //
    // C++:  void drawDataMatrixCodes(Mat& image, vector_string codes, Mat corners)
    //

    // Unknown type 'vector_string' (I), skipping the function


    //
    // C++:  void findDataMatrix(Mat image, vector_string& codes, Mat& corners = Mat(), vector_Mat& dmtx = vector_Mat())
    //

    // Unknown type 'vector_string' (O), skipping the function


    //
    // C++:  void groupRectangles(vector_Rect& rectList, vector_int& weights, int groupThreshold, double eps = 0.2)
    //

/**
 * 

Groups the object candidate rectangles.

* *

The function is a wrapper for the generic function "partition". It clusters * all the input rectangles using the rectangle equivalence criteria that * combines rectangles with similar sizes and similar locations. The similarity * is defined by eps. When eps=0, no clustering is * done at all. If eps-> +inf, all the rectangles are put in one * cluster. Then, the small clusters containing less than or equal to * groupThreshold rectangles are rejected. In each other cluster, * the average rectangle is computed and put into the output rectangle list.

* * @param rectList Input/output vector of rectangles. Output vector includes * retained and grouped rectangles. (The Python list is not modified in place.) * @param weights a weights * @param groupThreshold Minimum possible number of rectangles minus 1. The * threshold is used in a group of rectangles to retain it. * @param eps Relative difference between sides of the rectangles to merge them * into a group. * * @see org.opencv.objdetect.Objdetect.groupRectangles */ public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold, double eps) { Mat rectList_mat = rectList; Mat weights_mat = weights; groupRectangles_0(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold, eps); return; } /** *

Groups the object candidate rectangles.

* *

The function is a wrapper for the generic function "partition". It clusters * all the input rectangles using the rectangle equivalence criteria that * combines rectangles with similar sizes and similar locations. The similarity * is defined by eps. When eps=0, no clustering is * done at all. If eps-> +inf, all the rectangles are put in one * cluster. Then, the small clusters containing less than or equal to * groupThreshold rectangles are rejected. In each other cluster, * the average rectangle is computed and put into the output rectangle list.

* * @param rectList Input/output vector of rectangles. Output vector includes * retained and grouped rectangles. (The Python list is not modified in place.) * @param weights a weights * @param groupThreshold Minimum possible number of rectangles minus 1. The * threshold is used in a group of rectangles to retain it. * * @see org.opencv.objdetect.Objdetect.groupRectangles */ public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold) { Mat rectList_mat = rectList; Mat weights_mat = weights; groupRectangles_1(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold); return; } // C++: void groupRectangles(vector_Rect& rectList, vector_int& weights, int groupThreshold, double eps = 0.2) private static native void groupRectangles_0(long rectList_mat_nativeObj, long weights_mat_nativeObj, int groupThreshold, double eps); private static native void groupRectangles_1(long rectList_mat_nativeObj, long weights_mat_nativeObj, int groupThreshold); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy