org.lsmp.djep.groupJep.values.Rational Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jep Show documentation
Show all versions of jep Show documentation
JEP is a Java library for parsing and evaluating mathematical expressions. Use groupId org.fudaa to deploy it in maven central
The newest version!
/* @author rich
* Created on 05-Mar-2004
*/
package org.lsmp.djep.groupJep.values;
import java.math.*;
/**
* A Rational number with full precision. Represented as quotien of two
* numbers (always in most reduced form with posative denominator).
*
* @author Rich Morris
* Created on 05-Mar-2004
*/
public class Rational extends Number implements Comparable {
private BigInteger numerator;
private BigInteger denominator;
/**
*/
private Rational() { }
public Rational(BigInteger num) {
numerator = num; denominator = BigInteger.ONE;
}
/** Rationals will always be represented in most reduced
* form with a positive denominator.
*/
public Rational(BigInteger num,BigInteger den) {
BigInteger gcd = num.gcd(den);
if(gcd.equals(BigInteger.ZERO)) {
numerator = denominator = BigInteger.ZERO;
}
else if(den.signum() > 0){
numerator = num.divide(gcd);
denominator = den.divide(gcd);
}
else {
numerator = num.divide(gcd).negate();
denominator = den.divide(gcd).negate();
}
}
public int intValue()
{
if(denominator.equals(BigInteger.ZERO))
{
int sign = numerator.signum();
if(sign == 0)
return Integer.MAX_VALUE;
else if(sign > 0 )
return Integer.MAX_VALUE;
else
return Integer.MIN_VALUE;
}
return numerator.divide(denominator).intValue();
}
public long longValue()
{
return numerator.divide(denominator).longValue();
}
public float floatValue()
{
if(denominator.equals(BigInteger.ZERO))
{
int sign = numerator.signum();
if(sign == 0)
return Float.NaN;
else if(sign > 0 )
return Float.POSITIVE_INFINITY;
else
return Float.NEGATIVE_INFINITY;
}
return numerator.divide(denominator).floatValue();
}
public double doubleValue()
{
if(denominator.equals(BigInteger.ZERO))
{
int sign = numerator.signum();
if(sign == 0)
return Double.NaN;
else if(sign > 0 )
return Double.POSITIVE_INFINITY;
else
return Double.NEGATIVE_INFINITY;
}
return numerator.divide(denominator).doubleValue();
}
public Rational add(Rational arg)
{
BigInteger ad = this.numerator.multiply(arg.denominator);
BigInteger bc = this.denominator.multiply(arg.numerator);
BigInteger bd = this.denominator.multiply(arg.denominator);
BigInteger top = ad.add(bc);
return new Rational(top,bd);
}
public Rational sub(Rational arg)
{
BigInteger ad = this.numerator.multiply(arg.denominator);
BigInteger bc = this.denominator.multiply(arg.numerator);
BigInteger bd = this.denominator.multiply(arg.denominator);
BigInteger top = ad.subtract(bc);
return new Rational(top,bd);
}
public Rational mul(Rational arg)
{
BigInteger ac = this.numerator.multiply(arg.numerator);
BigInteger bd = this.denominator.multiply(arg.denominator);
return new Rational(ac,bd);
}
public Rational div(Rational arg)
{
BigInteger ad = this.numerator.multiply(arg.denominator);
BigInteger bc = this.denominator.multiply(arg.numerator);
return new Rational(ad,bc);
}
public Rational pow(Rational arg)
{
if(!arg.denominator.equals(BigInteger.ONE))
throw new ArithmeticException("Can only raise rationals to integer powers");
int exponant = arg.numerator.intValue();
if(exponant == 0)
return new Rational(BigInteger.ONE);
else if(exponant > 0)
{
BigInteger top = this.numerator.pow(exponant);
BigInteger bot = this.denominator.pow(exponant);
return new Rational(top,bot);
}
else
{ // (a/b)^(-c) -> (b/a)^c -> (b^c/a^c)
BigInteger top = this.numerator.pow(-exponant);
BigInteger bot = this.denominator.pow(-exponant);
return new Rational(bot,top);
}
}
public Rational negate()
{
return new Rational(numerator.negate(),denominator);
}
public Rational inverse()
{
return new Rational(denominator,numerator);
}
public static Number valueOf(String s) {
int pos = s.indexOf('/');
if(pos==-1) return new Rational(new BigInteger(s));
return new Rational(
new BigInteger(s.substring(pos-1)),
new BigInteger(s.substring(pos+1,-1)));
}
/**
* * Returns the bottom half of the rational.
*/
public BigInteger getDenominator() {
return denominator;
}
/**
* Returns the top half of the rational.
*/
public BigInteger getNumerator() {
return numerator;
}
public String toString() {
if(denominator.equals(BigInteger.ONE))
return numerator.toString();
return numerator.toString() +"/" + denominator.toString();
}
public int compareTo(Object arg)
{
Rational num = (Rational) arg;
if(this.denominator.compareTo(num.denominator) == 0)
{
return this.numerator.compareTo(num.numerator);
}
BigInteger ad = this.numerator.multiply(num.denominator);
BigInteger bc = this.denominator.multiply(num.numerator);
return ad.compareTo(bc);
}
}