All Downloads are FREE. Search and download functionalities are using the official Maven repository.

fj.Monoid Maven / Gradle / Ivy

Go to download

Functional Java is an open source library that supports closures for the Java programming language

There is a newer version: 5.0
Show newest version
package fj;

import static fj.F1Functions.dimap;

import fj.data.Array;
import fj.data.DList;
import fj.data.List;
import fj.data.IO;
import fj.data.Natural;
import fj.data.Option;
import fj.data.Set;
import fj.data.Stream;

import static fj.Function.*;
import static fj.Semigroup.semigroupDef;
import static fj.Unit.unit;
import static fj.data.List.nil;
import static fj.data.Natural.natural;
import static fj.data.Option.none;
import static fj.data.Stream.iterableStream;

import java.math.BigInteger;
import java.math.BigDecimal;

/**
 * A monoid abstraction to be defined across types of the given type argument. Implementations must
 * follow the monoidal laws:
 * 
    *
  • Left Identity; forall x. sum(zero(), x) == x
  • *
  • Right Identity; forall x. sum(x, zero()) == x
  • *
  • Associativity; forall x y z. sum(sum(x, y), z) == sum(x, sum(y, z))
  • *
* * @version %build.number% */ public final class Monoid { private final Definition def; /** * Primitives functions of Monoid: minimal definition and overridable methods. */ public interface Definition extends Semigroup.Definition { A empty(); default A sum(F0> as) { return as.f().foldLeft(this::append, empty()); } @Override default A sum(A a, F0> as) { return sum(() -> Stream.cons(a, as)); } default A multiply(int n, A a) { return (n <= 0) ? empty() : Semigroup.Definition.super.multiply1p(n - 1, a); } @Override default A multiply1p(int n, A a) { return n == Integer.MAX_VALUE ? append(a, multiply(n, a)) : multiply(n + 1, a); } default Definition dual() { return new Definition(){ @Override public A empty() { return Definition.this.empty(); } @Override public A append(A a1, A a2) { return Definition.this.append(a2, a1); } @Override public A multiply(int n, A a) { return Definition.this.multiply(n, a); } @Override public Definition dual() { return Definition.this; } }; } } /** * Primitives functions of Monoid: alternative minimal definition and overridable methods. */ public interface AltDefinition extends Definition { @Override F prepend(A a); @Override default A append(A a1, A a2) { return prepend(a1).f(a2); } } private Monoid(Definition def) { this.def = def; } /** * Composes this monoid with another. */ public Monoid>compose(Monoid m) { return compose(m, P2.__1(), P2.__2(), P::p); } /** * Returns a semigroup projection of this monoid. * * @return A semigroup projection of this monoid. */ public Semigroup semigroup() { return semigroupDef(def); } /** * Maps the given functions across this monoid as an invariant functor. * * @param f The covariant map. * @param g The contra-variant map. * @return A new monoid. */ public Monoid xmap(final F f, final F g) { Monoid.Definition def = this.def; B zero = f.f(def.empty()); return monoidDef(new Definition() { @Override public B empty() { return zero; } @Override public B append(B a1, B a2) { return f.f(def.append(g.f(a1), g.f(a2))); } @Override public F prepend(B b) { return dimap(def.prepend(g.f(b)), g, f); } @Override public B multiply(int n, B b) { return f.f(def.multiply(n , g.f(b))); } @Override public B sum(F0> as) { return f.f(def.sum(() -> as.f().map(g))); } }); } public Monoid compose(Monoid mb, final F a, final F b, final F2 c) { Definition maDef = this.def; Definition mbDef = mb.def; C empty = c.f(maDef.empty(), mbDef.empty()); return monoidDef(new Definition() { @Override public C empty() { return empty; } @Override public C append(C c1, C c2) { return c.f(maDef.append(a.f(c1), a.f(c2)), mbDef.append(b.f(c1), b.f(c2))); } @Override public F prepend(C c1) { F prependA = maDef.prepend(a.f(c1)); F prependB = mbDef.prepend(b.f(c1)); return c2 -> c.f(prependA.f(a.f(c2)), prependB.f(b.f(c2))); } @Override public C multiply(int n, C c1) { return c.f(maDef.multiply(n, a.f(c1)), mbDef.multiply(n, b.f(c1))); } @Override public C sum(F0> cs) { return c.f(maDef.sum(() -> cs.f().map(a)), mbDef.sum(() -> cs.f().map(b))); } }); } /** * Sums the two given arguments. * * @param a1 A value to sum with another. * @param a2 A value to sum with another. * @return The of the two given arguments. */ public A sum(final A a1, final A a2) { return def.append(a1, a2); } /** * Returns a function that sums the given value according to this monoid. * * @param a1 The value to sum. * @return A function that sums the given value according to this monoid. */ public F sum(final A a1) { return def.prepend(a1); } /** * Returns a function that sums according to this monoid. * * @return A function that sums according to this monoid. */ public F> sum() { return def::prepend; } /** * The zero value for this monoid. * * @return The zero value for this monoid. */ public A zero() { return def.empty(); } /** * Returns a value summed n times (a + a + ... + a). * The default definition uses peasant multiplication, exploiting * associativity to only require `O(log n)` uses of * {@link #sum(Object, Object)}. * * @param n multiplier * @param a the value to be reapeatly summed * @return {@code a} summed {@code n} times. If {@code n <= 0}, returns * {@code zero()} */ public A multiply(final int n, final A a) { return def.multiply(n, a); } /** * Sums the given values with right-fold. * * @param as The values to sum. * @return The sum of the given values. */ public A sumRight(final List as) { return as.foldRight(def::append, def.empty()); } /** * Sums the given values with right-fold. * * @param as The values to sum. * @return The sum of the given values. */ public A sumRight(final Stream as) { return as.foldRight1(def::append, def.empty()); } /** * Sums the given values with left-fold. * * @param as The values to sum. * @return The sum of the given values. */ public A sumLeft(final List as) { return as.foldLeft(def::append, def.empty()); } /** * Sums the given values with left-fold. * * @param as The values to sum. * @return The sum of the given values. */ public A sumLeft(final Stream as) { return def.sum(() -> as); } /** * Returns a function that sums the given values with left-fold. * * @return a function that sums the given values with left-fold. */ public F, A> sumLeft() { return this::sumLeft; } /** * Returns a function that sums the given values with right-fold. * * @return a function that sums the given values with right-fold. */ public F, A> sumRight() { return this::sumRight; } /** * Returns a function that sums the given values with left-fold. * * @return a function that sums the given values with left-fold. */ public F, A> sumLeftS() { return this::sumLeft; } /** * Intersperses the given value between each two elements of the iterable, and sums the result. * * @param as An iterable of values to sum. * @param a The value to intersperse between values of the given iterable. * @return The sum of the given values and the interspersed value. */ public A join(final Iterable as, final A a) { final Stream s = iterableStream(as); F prependA = def.prepend(a); return s.isEmpty() ? def.empty() : s.foldLeft1((a1, a2) -> def.append(a1, prependA.f(a2))); } /** * Swaps the arguments when summing. */ public Monoid dual() { return monoidDef(def.dual()); } /** * Constructs a monoid from the given definition, which must follow the monoidal * laws. * * @param def The definition for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ public static Monoid monoidDef(Definition def) { return new Monoid<>(def); } /** * Constructs a monoid from the given definition, which must follow the monoidal * laws. * * @param def The definition for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ public static Monoid monoidDef(AltDefinition def) { return new Monoid<>(def); } /** * Constructs a monoid from the given semigroup definition and zero value, which must follow the monoidal laws. * * @param s The semigroup definition for the monoid. * @param zero The zero for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ public static Monoid monoidDef(final Semigroup.Definition s, final A zero) { return new Monoid<>(new Monoid.Definition() { @Override public A empty() { return zero; } @Override public A sum(F0> as) { return s.sum(zero, as); } @Override public A sum(A a, F0> as) { return s.sum(a, as); } @Override public A multiply(int n, A a) { return (n <= 0) ? zero : s.multiply1p(n - 1, a); } @Override public A multiply1p(int n, A a) { return s.multiply1p(n, a); } @Override public A append(A a1, A a2) { return s.append(a1, a2); } @Override public F prepend(A a) { return s.prepend(a); } }); } /** * Constructs a monoid from the given semigroup definition and zero value, which must follow the monoidal laws. * * @param s The semigroup definition for the monoid. * @param zero The zero for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ public static Monoid monoidDef(final Semigroup.AltDefinition s, final A zero) { return monoidDef((Semigroup.Definition) s, zero); } /** * Constructs a monoid from the given sum function and zero value, which must follow the monoidal * laws. * Java 8+ users: use {@link #monoidDef(Semigroup.Definition, Object)} instead. * * @param sum The sum function for the monoid. * @param zero The zero for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ public static Monoid monoid(final F> sum, final A zero) { return new Monoid<>(new AltDefinition() { @Override public F prepend(A a) { return sum.f(a); } @Override public A empty() { return zero; } }); } /** * Constructs a monoid from the given sum function and zero value, which must follow the monoidal * laws. * * Java 8+ users: use {@link #monoidDef(Semigroup.Definition, Object)} instead. * * @param sum The sum function for the monoid. * @param zero The zero for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ public static Monoid monoid(final F2 sum, final A zero) { return new Monoid<>(new Definition() { @Override public A empty() { return zero; } @Override public A append(A a1, A a2) { return sum.f(a1, a2); } }); } /** * Constructs a monoid from the given semigroup and zero value, which must follow the monoidal laws. * @deprecated since 4.7. Use {@link #monoidDef(Semigroup.Definition, Object)} or {@link Semigroup#monoid(Object)} instead. * * @param s The semigroup for the monoid. * @param zero The zero for the monoid. * @return A monoid instance that uses the given sun function and zero value. */ @Deprecated public static Monoid monoid(final Semigroup s, final A zero) { return s.monoid(zero); } /** * A monoid that adds integers. */ public static final Monoid intAdditionMonoid = monoidDef(new Definition() { @Override public Integer empty() { return 0; } @Override public Integer append(Integer a1, Integer a2) { return a1 + a2; } @Override public Integer multiply(int n, Integer i) { return n <= 0 ? 0 : n * i; } }); /** * A monoid that multiplies integers. */ public static final Monoid intMultiplicationMonoid = monoidDef(new Definition() { @Override public Integer empty() { return 1; } @Override public Integer append(Integer i1, Integer i2) { return i1 * i2; } @Override public Integer sum(F0> as) { int x = 1; for (Stream xs = as.f(); x != 0 && !xs.isEmpty(); xs = xs.tail()._1()) { x *= xs.head(); } return x; } @Override public Integer multiply(int n, Integer integer) { return n <= 0 ? 1 : (int) StrictMath.pow(integer.doubleValue(), n); } }); /** * @deprecated Since 4.7. Due to rounding errors, addition of doubles does not comply with monoid laws */ @Deprecated public static final Monoid doubleAdditionMonoid = monoidDef((d1, d2) -> d1 + d2, 0.0); /** * @deprecated Since 4.7. Due to rounding errors, multiplication of doubles does not comply with monoid laws */ @Deprecated public static final Monoid doubleMultiplicationMonoid = monoidDef((d1, d2) -> d1 * d2, 1.0); /** * A monoid that adds big integers. */ public static final Monoid bigintAdditionMonoid = monoidDef(new Definition() { @Override public BigInteger empty() { return BigInteger.ZERO; } @Override public BigInteger append(BigInteger a1, BigInteger a2) { return a1.add(a2); } @Override public BigInteger multiply(int n, BigInteger a) { return n <= 0 ? BigInteger.ZERO : a.multiply(BigInteger.valueOf(n)); } }); /** * A monoid that multiplies big integers. */ public static final Monoid bigintMultiplicationMonoid = monoidDef(new Definition() { @Override public BigInteger empty() { return BigInteger.ONE; } @Override public BigInteger append(BigInteger a1, BigInteger a2) { return a1.multiply(a2); } @Override public BigInteger multiply(int n, BigInteger a) { return n <= 0 ? BigInteger.ONE : a.pow(n); } }); /** * A monoid that adds big decimals. */ public static final Monoid bigdecimalAdditionMonoid = monoidDef(new Definition() { @Override public BigDecimal empty() { return BigDecimal.ZERO; } @Override public BigDecimal append(BigDecimal a1, BigDecimal a2) { return a1.add(a2); } @Override public BigDecimal multiply(int n, BigDecimal a) { return n <= 0 ? BigDecimal.ZERO : a.multiply(BigDecimal.valueOf(n)); } }); /** * A monoid that multiplies big decimals. */ public static final Monoid bigdecimalMultiplicationMonoid = monoidDef(new Definition() { @Override public BigDecimal empty() { return BigDecimal.ONE; } @Override public BigDecimal append(BigDecimal a1, BigDecimal a2) { return a1.multiply(a2); } @Override public BigDecimal multiply(int n, BigDecimal decimal) { return n <= 0 ? BigDecimal.ONE : decimal.pow(n); } }); /** * A monoid that adds natural numbers. */ public static final Monoid naturalAdditionMonoid = monoidDef(new Definition() { @Override public Natural empty() { return Natural.ZERO; } @Override public Natural append(Natural a1, Natural a2) { return a1.add(a2); } @Override public Natural multiply(int n, Natural a) { return natural(n).map(positiveN -> a.multiply(positiveN)).orSome(Natural.ZERO); } }); /** * A monoid that multiplies natural numbers. */ public static final Monoid naturalMultiplicationMonoid = monoidDef(new Definition() { @Override public Natural empty() { return Natural.ONE; } @Override public Natural append(Natural a1, Natural a2) { return a1.multiply(a2); } }); /** * A monoid that adds longs. */ public static final Monoid longAdditionMonoid = monoidDef(new Definition() { @Override public Long empty() { return 0L; } @Override public Long append(Long a1, Long a2) { return a1 + a2; } @Override public Long multiply(int n, Long a) { return n <= 0 ? 0L : n * a; } }); /** * A monoid that multiplies longs. */ public static final Monoid longMultiplicationMonoid = monoidDef(new Definition() { @Override public Long empty() { return 1L; } @Override public Long append(Long i1, Long i2) { return i1 * i2; } @Override public Long sum(F0> as) { long x = 1L; for (Stream xs = as.f(); x != 0L && !xs.isEmpty(); xs = xs.tail()._1()) { x *= xs.head(); } return x; } @Override public Long multiply(int n, Long l) { return n <= 0 ? 1L : (long) StrictMath.pow(l.doubleValue(), n); } }); /** * A monoid that ORs booleans. */ public static final Monoid disjunctionMonoid = monoidDef(new Definition() { @Override public Boolean empty() { return false; } @Override public Boolean append(Boolean a1, Boolean a2) { return a1 | a2; } @Override public Boolean sum(F0> as) { return as.f().filter(identity()).isNotEmpty(); } @Override public Boolean multiply(int n, Boolean a) { return n <= 0 ? false : a; } }); /** * A monoid that XORs booleans. */ public static final Monoid exclusiveDisjunctionMonoid = monoidDef(new Definition() { @Override public Boolean empty() { return false; } @Override public Boolean append(Boolean a1, Boolean a2) { return a1 ^ a2; } @Override public Boolean multiply(int n, Boolean a) { return a && (n == 1); } }); /** * A monoid that ANDs booleans. */ public static final Monoid conjunctionMonoid = monoidDef(new Definition() { @Override public Boolean empty() { return true; } @Override public Boolean append(Boolean a1, Boolean a2) { return a1 & a2; } @Override public Boolean multiply(int n, Boolean a) { return a; } @Override public Boolean sum(F0> as) { return as.f().filter(a -> !a).isEmpty(); } }); /** * A monoid that appends strings. */ public static final Monoid stringMonoid = monoidDef(new Definition() { @Override public String empty() { return ""; } @Override public String append(String a1, String a2) { return a1.concat(a2); } @Override public String sum(F0> as) { StringBuilder sb = new StringBuilder(); as.f().foreachDoEffect(sb::append); return sb.toString(); } }); /** * A monoid that appends string buffers. */ public static final Monoid stringBufferMonoid = monoidDef((s1, s2) -> new StringBuffer(s1).append(s2), new StringBuffer(0)); /** * A monoid that appends string builders. */ public static final Monoid stringBuilderMonoid = monoidDef((s1, s2) -> new StringBuilder(s1).append(s2), new StringBuilder(0)); /** * A monoid for functions. * * @param mb The monoid for the function codomain. * @return A monoid for functions. */ public static Monoid> functionMonoid(final Monoid mb) { Definition mbDef = mb.def; return monoidDef(new Definition>() { @Override public F empty() { return __ -> mbDef.empty(); } @Override public F append(F a1, F a2) { return a -> mbDef.append(a1.f(a), a2.f(a)); } }); } /** * A monoid for lists. * * @return A monoid for lists. */ public static Monoid> listMonoid() { return monoidDef(new Definition>() { @Override public List empty() { return nil(); } @Override public List append(List a1, List a2) { return a1.append(a2); } @Override public List sum(F0>> as) { return as.f().map(DList::listDList).foldLeft(DList::append, DList.nil()).run(); } }); } /** * A monoid for options. * @deprecated since 4.7. Use {@link #firstOptionMonoid()}. * * @return A monoid for options. */ @Deprecated public static Monoid> optionMonoid() { return firstOptionMonoid(); } /** * A monoid for options that take the first available value. * * @return A monoid for options that take the first available value. */ public static Monoid> firstOptionMonoid() { return monoidDef(new Definition>() { @Override public Option empty() { return none(); } @Override public Option append(Option a1, Option a2) { return a1.orElse(a2); } @Override public F, Option> prepend(Option a1) { return a1.isSome() ? __ -> a1 : identity(); } @Override public Option multiply(int n, Option as) { return as; } @Override public Option sum(F0>> as) { return as.f().filter(Option.isSome_()).orHead(Option::none); } }); } /** * A monoid for options that take the last available value. * * @return A monoid for options that take the last available value. */ public static Monoid> lastOptionMonoid() { return monoidDef(new Definition>() { @Override public Option empty() { return none(); } @Override public Option append(Option a1, Option a2) { return a2.orElse(a1); } @Override public F, Option> prepend(Option a1) { return a1.isNone() ? identity() : a2 -> a2.orElse(a1); } @Override public Option multiply(int n, Option as) { return as; } }); } /** * A monoid for streams. * * @return A monoid for streams. */ public static Monoid> streamMonoid() { return monoidDef(new Definition>() { @Override public Stream empty() { return Stream.nil(); } @Override public Stream append(Stream a1, Stream a2) { return a1.append(a2); } @Override public Stream sum(F0>> as) { return Stream.join(as.f()); } }); } /** * A monoid for arrays. * * @return A monoid for arrays. */ @SuppressWarnings("unchecked") public static Monoid> arrayMonoid() { return monoidDef(new Definition>() { @Override public Array empty() { return Array.empty(); } @Override public Array append(Array a1, Array a2) { return a1.append(a2); } }); } /** * A monoid for IO values. */ public static Monoid> ioMonoid(final Monoid ma) { Definition maDef = ma.def; return monoidDef(new Definition>() { @Override public IO empty() { return () -> maDef.empty(); } @Override public IO append(IO a1, IO a2) { return () -> maDef.append(a1.run(), a2.run()); } }); } /** * A monoid for the maximum of two integers. */ public static final Monoid intMaxMonoid = monoidDef(new Definition() { @Override public Integer empty() { return Integer.MIN_VALUE; } @Override public Integer append(Integer a1, Integer a2) { return Math.max(a1, a2); } @Override public Integer multiply(int n, Integer a) { return a; } }); /** * A monoid for the minimum of two integers. */ public static final Monoid intMinMonoid = monoidDef(new Definition() { @Override public Integer empty() { return Integer.MAX_VALUE; } @Override public Integer append(Integer a1, Integer a2) { return Math.min(a1, a2); } @Override public Integer multiply(int n, Integer a) { return a; } }); /** * A monoid for the Unit value. */ public static final Monoid unitMonoid = monoidDef(new Definition() { @Override public Unit empty() { return unit(); } @Override public Unit append(Unit a1, Unit a2) { return unit(); } }); /** * A monoid for sets. * * @param o An order for set elements. * @return A monoid for sets whose elements have the given order. */ public static Monoid> setMonoid(final Ord o) { return monoidDef(new Definition>() { @Override public Set empty() { return Set.empty(o); } @Override public Set append(Set a1, Set a2) { return a1.union(a2); } }); } /** * A monoid for the maximum of elements with ordering o. * @deprecated since 4.7. Use {@link Ord#maxMonoid(Object)} * * @param o An ordering of elements. * @param zero The minimum element. */ @Deprecated public static Monoid ordMaxMonoid(final Ord o, final A zero) { return o.maxMonoid(zero); } }